Code
from sympy import *
import numpy as np
from scipy import signal
import matplotlib.pyplot as plt
import matplotlib.ticker
import pandas as pd
import SymMNA
from IPython.display import display, Markdown, Math, Latex
init_printing()
from sympy import *
import numpy as np
from scipy import signal
import matplotlib.pyplot as plt
import matplotlib.ticker
import pandas as pd
import SymMNA
from IPython.display import display, Markdown, Math, Latex
init_printing()
In has been reported that Finnegan worked with MIT graduate Fred Fenning and other electrical engineer friends on this project. The description of the developmnent is a little vage but sounded like the design flow was mainly building prototype circuits and Finnegan doing evaluation and playing tests to get the sound he wanted.
Obvsiously a circuit of this size would not be analysised by hand. In the earily 1990’s when the Klon Centuar was under development, the circuit analysis tools would have been limited some version of SPICE either running on a PC or a larger computer at a university.
for four and a half years to create prototype pedals
There are many pedals inspired by the Klon Centuar, here are a few:
= '''
sum_path1_v1_net_list * Klon-Centaur_sum_path1_v1.asc
V1 1 0 1
C3 3 1 100e-9
R6 4 3 10e3
C5 4 3 68e-9
R7 3 5 1.5e3
R24 2 5 15e3
C16 5 0 1e-6
Rp1 0 4 50e3
V2 2 0 0
'''
= SymMNA.smna(sum_path1_v1_net_list) report, network_df, i_unk_df, A, X, Z
Build the network equations
# Put matrices into SymPy
= Matrix(X)
X = Matrix(Z)
Z
= Eq(A*X,Z)
NE_sym
# display the equations
= ''
temp for i in range(shape(NE_sym.lhs)[0]):
+= '${:s} = {:s}$<br>'.format(latex(NE_sym.rhs[i]),latex(NE_sym.lhs[i]))
temp Markdown(temp)
\(0 = C_{3} s v_{1} - C_{3} s v_{3} + I_{V1}\)
\(0 = I_{V2} + \frac{v_{2}}{R_{24}} - \frac{v_{5}}{R_{24}}\)
\(0 = - C_{3} s v_{1} + v_{3} \left(C_{3} s + C_{5} s + \frac{1}{R_{7}} + \frac{1}{R_{6}}\right) + v_{4} \left(- C_{5} s - \frac{1}{R_{6}}\right) - \frac{v_{5}}{R_{7}}\)
\(0 = v_{3} \left(- C_{5} s - \frac{1}{R_{6}}\right) + v_{4} \left(C_{5} s + \frac{1}{Rp_{1}} + \frac{1}{R_{6}}\right)\)
\(0 = v_{5} \left(C_{16} s + \frac{1}{R_{7}} + \frac{1}{R_{24}}\right) - \frac{v_{3}}{R_{7}} - \frac{v_{2}}{R_{24}}\)
\(V_{1} = v_{1}\)
\(V_{2} = v_{2}\)
Turn the free symbols into SymPy variables.
str(NE_sym.free_symbols).replace('{','').replace('}','')) var(
\(\displaystyle \left( v_{3}, \ v_{2}, \ v_{5}, \ R_{6}, \ R_{24}, \ I_{V1}, \ R_{7}, \ C_{5}, \ v_{1}, \ Rp_{1}, \ s, \ v_{4}, \ C_{3}, \ V_{1}, \ C_{16}, \ V_{2}, \ I_{V2}\right)\)
= SymMNA.get_part_values(network_df) element_values
The network equations can be solved symbolically.
= solve(NE_sym,X) U_sym
Display the symbolic solution
= ''
temp for i in U_sym.keys():
+= '${:s} = {:s}$<br>'.format(latex(i),latex(U_sym[i]))
temp
Markdown(temp)
\(v_{1} = V_{1}\)
\(v_{2} = V_{2}\)
\(v_{3} = \frac{C_{16} C_{3} C_{5} R_{24} R_{6} R_{7} Rp_{1} V_{1} s^{3} + C_{16} C_{3} R_{24} R_{6} R_{7} V_{1} s^{2} + C_{16} C_{3} R_{24} R_{7} Rp_{1} V_{1} s^{2} + C_{3} C_{5} R_{24} R_{6} Rp_{1} V_{1} s^{2} + C_{3} C_{5} R_{6} R_{7} Rp_{1} V_{1} s^{2} + C_{3} R_{24} R_{6} V_{1} s + C_{3} R_{24} Rp_{1} V_{1} s + C_{3} R_{6} R_{7} V_{1} s + C_{3} R_{7} Rp_{1} V_{1} s + C_{5} R_{6} Rp_{1} V_{2} s + R_{6} V_{2} + Rp_{1} V_{2}}{C_{16} C_{3} C_{5} R_{24} R_{6} R_{7} Rp_{1} s^{3} + C_{16} C_{3} R_{24} R_{6} R_{7} s^{2} + C_{16} C_{3} R_{24} R_{7} Rp_{1} s^{2} + C_{16} C_{5} R_{24} R_{6} R_{7} s^{2} + C_{16} C_{5} R_{24} R_{6} Rp_{1} s^{2} + C_{16} R_{24} R_{6} s + C_{16} R_{24} R_{7} s + C_{16} R_{24} Rp_{1} s + C_{3} C_{5} R_{24} R_{6} Rp_{1} s^{2} + C_{3} C_{5} R_{6} R_{7} Rp_{1} s^{2} + C_{3} R_{24} R_{6} s + C_{3} R_{24} Rp_{1} s + C_{3} R_{6} R_{7} s + C_{3} R_{7} Rp_{1} s + C_{5} R_{24} R_{6} s + C_{5} R_{6} R_{7} s + C_{5} R_{6} Rp_{1} s + R_{24} + R_{6} + R_{7} + Rp_{1}}\)
\(v_{4} = \frac{C_{16} C_{3} C_{5} R_{24} R_{6} R_{7} Rp_{1} V_{1} s^{3} + C_{16} C_{3} R_{24} R_{7} Rp_{1} V_{1} s^{2} + C_{3} C_{5} R_{24} R_{6} Rp_{1} V_{1} s^{2} + C_{3} C_{5} R_{6} R_{7} Rp_{1} V_{1} s^{2} + C_{3} R_{24} Rp_{1} V_{1} s + C_{3} R_{7} Rp_{1} V_{1} s + C_{5} R_{6} Rp_{1} V_{2} s + Rp_{1} V_{2}}{C_{16} C_{3} C_{5} R_{24} R_{6} R_{7} Rp_{1} s^{3} + C_{16} C_{3} R_{24} R_{6} R_{7} s^{2} + C_{16} C_{3} R_{24} R_{7} Rp_{1} s^{2} + C_{16} C_{5} R_{24} R_{6} R_{7} s^{2} + C_{16} C_{5} R_{24} R_{6} Rp_{1} s^{2} + C_{16} R_{24} R_{6} s + C_{16} R_{24} R_{7} s + C_{16} R_{24} Rp_{1} s + C_{3} C_{5} R_{24} R_{6} Rp_{1} s^{2} + C_{3} C_{5} R_{6} R_{7} Rp_{1} s^{2} + C_{3} R_{24} R_{6} s + C_{3} R_{24} Rp_{1} s + C_{3} R_{6} R_{7} s + C_{3} R_{7} Rp_{1} s + C_{5} R_{24} R_{6} s + C_{5} R_{6} R_{7} s + C_{5} R_{6} Rp_{1} s + R_{24} + R_{6} + R_{7} + Rp_{1}}\)
\(v_{5} = \frac{C_{3} C_{5} R_{24} R_{6} Rp_{1} V_{1} s^{2} + C_{3} C_{5} R_{6} R_{7} Rp_{1} V_{2} s^{2} + C_{3} R_{24} R_{6} V_{1} s + C_{3} R_{24} Rp_{1} V_{1} s + C_{3} R_{6} R_{7} V_{2} s + C_{3} R_{7} Rp_{1} V_{2} s + C_{5} R_{6} R_{7} V_{2} s + C_{5} R_{6} Rp_{1} V_{2} s + R_{6} V_{2} + R_{7} V_{2} + Rp_{1} V_{2}}{C_{16} C_{3} C_{5} R_{24} R_{6} R_{7} Rp_{1} s^{3} + C_{16} C_{3} R_{24} R_{6} R_{7} s^{2} + C_{16} C_{3} R_{24} R_{7} Rp_{1} s^{2} + C_{16} C_{5} R_{24} R_{6} R_{7} s^{2} + C_{16} C_{5} R_{24} R_{6} Rp_{1} s^{2} + C_{16} R_{24} R_{6} s + C_{16} R_{24} R_{7} s + C_{16} R_{24} Rp_{1} s + C_{3} C_{5} R_{24} R_{6} Rp_{1} s^{2} + C_{3} C_{5} R_{6} R_{7} Rp_{1} s^{2} + C_{3} R_{24} R_{6} s + C_{3} R_{24} Rp_{1} s + C_{3} R_{6} R_{7} s + C_{3} R_{7} Rp_{1} s + C_{5} R_{24} R_{6} s + C_{5} R_{6} R_{7} s + C_{5} R_{6} Rp_{1} s + R_{24} + R_{6} + R_{7} + Rp_{1}}\)
\(I_{V1} = \frac{- C_{16} C_{3} C_{5} R_{24} R_{6} R_{7} V_{1} s^{3} - C_{16} C_{3} C_{5} R_{24} R_{6} Rp_{1} V_{1} s^{3} - C_{16} C_{3} R_{24} R_{6} V_{1} s^{2} - C_{16} C_{3} R_{24} R_{7} V_{1} s^{2} - C_{16} C_{3} R_{24} Rp_{1} V_{1} s^{2} - C_{3} C_{5} R_{24} R_{6} V_{1} s^{2} - C_{3} C_{5} R_{6} R_{7} V_{1} s^{2} - C_{3} C_{5} R_{6} Rp_{1} V_{1} s^{2} + C_{3} C_{5} R_{6} Rp_{1} V_{2} s^{2} - C_{3} R_{24} V_{1} s - C_{3} R_{6} V_{1} s + C_{3} R_{6} V_{2} s - C_{3} R_{7} V_{1} s - C_{3} Rp_{1} V_{1} s + C_{3} Rp_{1} V_{2} s}{C_{16} C_{3} C_{5} R_{24} R_{6} R_{7} Rp_{1} s^{3} + C_{16} C_{3} R_{24} R_{6} R_{7} s^{2} + C_{16} C_{3} R_{24} R_{7} Rp_{1} s^{2} + C_{16} C_{5} R_{24} R_{6} R_{7} s^{2} + C_{16} C_{5} R_{24} R_{6} Rp_{1} s^{2} + C_{16} R_{24} R_{6} s + C_{16} R_{24} R_{7} s + C_{16} R_{24} Rp_{1} s + C_{3} C_{5} R_{24} R_{6} Rp_{1} s^{2} + C_{3} C_{5} R_{6} R_{7} Rp_{1} s^{2} + C_{3} R_{24} R_{6} s + C_{3} R_{24} Rp_{1} s + C_{3} R_{6} R_{7} s + C_{3} R_{7} Rp_{1} s + C_{5} R_{24} R_{6} s + C_{5} R_{6} R_{7} s + C_{5} R_{6} Rp_{1} s + R_{24} + R_{6} + R_{7} + Rp_{1}}\)
\(I_{V2} = \frac{- C_{16} C_{3} C_{5} R_{6} R_{7} Rp_{1} V_{2} s^{3} - C_{16} C_{3} R_{6} R_{7} V_{2} s^{2} - C_{16} C_{3} R_{7} Rp_{1} V_{2} s^{2} - C_{16} C_{5} R_{6} R_{7} V_{2} s^{2} - C_{16} C_{5} R_{6} Rp_{1} V_{2} s^{2} - C_{16} R_{6} V_{2} s - C_{16} R_{7} V_{2} s - C_{16} Rp_{1} V_{2} s + C_{3} C_{5} R_{6} Rp_{1} V_{1} s^{2} - C_{3} C_{5} R_{6} Rp_{1} V_{2} s^{2} + C_{3} R_{6} V_{1} s - C_{3} R_{6} V_{2} s + C_{3} Rp_{1} V_{1} s - C_{3} Rp_{1} V_{2} s - C_{5} R_{6} V_{2} s - V_{2}}{C_{16} C_{3} C_{5} R_{24} R_{6} R_{7} Rp_{1} s^{3} + C_{16} C_{3} R_{24} R_{6} R_{7} s^{2} + C_{16} C_{3} R_{24} R_{7} Rp_{1} s^{2} + C_{16} C_{5} R_{24} R_{6} R_{7} s^{2} + C_{16} C_{5} R_{24} R_{6} Rp_{1} s^{2} + C_{16} R_{24} R_{6} s + C_{16} R_{24} R_{7} s + C_{16} R_{24} Rp_{1} s + C_{3} C_{5} R_{24} R_{6} Rp_{1} s^{2} + C_{3} C_{5} R_{6} R_{7} Rp_{1} s^{2} + C_{3} R_{24} R_{6} s + C_{3} R_{24} Rp_{1} s + C_{3} R_{6} R_{7} s + C_{3} R_{7} Rp_{1} s + C_{5} R_{24} R_{6} s + C_{5} R_{6} R_{7} s + C_{5} R_{6} Rp_{1} s + R_{24} + R_{6} + R_{7} + Rp_{1}}\)
Explanation of operation by looking at the pole and zero locations.
Should this be Z11? Z_sym?
Think about inverting op amp conf with C13 || R20 as R feedback
= cancel(U_sym[v1]/U_sym[I_V1])
H_sym H_sym
\(\displaystyle \frac{- C_{16} C_{3} C_{5} R_{24} R_{6} R_{7} Rp_{1} V_{1} s^{3} - C_{16} C_{3} R_{24} R_{6} R_{7} V_{1} s^{2} - C_{16} C_{3} R_{24} R_{7} Rp_{1} V_{1} s^{2} - C_{16} C_{5} R_{24} R_{6} R_{7} V_{1} s^{2} - C_{16} C_{5} R_{24} R_{6} Rp_{1} V_{1} s^{2} - C_{16} R_{24} R_{6} V_{1} s - C_{16} R_{24} R_{7} V_{1} s - C_{16} R_{24} Rp_{1} V_{1} s - C_{3} C_{5} R_{24} R_{6} Rp_{1} V_{1} s^{2} - C_{3} C_{5} R_{6} R_{7} Rp_{1} V_{1} s^{2} - C_{3} R_{24} R_{6} V_{1} s - C_{3} R_{24} Rp_{1} V_{1} s - C_{3} R_{6} R_{7} V_{1} s - C_{3} R_{7} Rp_{1} V_{1} s - C_{5} R_{24} R_{6} V_{1} s - C_{5} R_{6} R_{7} V_{1} s - C_{5} R_{6} Rp_{1} V_{1} s - R_{24} V_{1} - R_{6} V_{1} - R_{7} V_{1} - Rp_{1} V_{1}}{C_{16} C_{3} C_{5} R_{24} R_{6} R_{7} V_{1} s^{3} + C_{16} C_{3} C_{5} R_{24} R_{6} Rp_{1} V_{1} s^{3} + C_{16} C_{3} R_{24} R_{6} V_{1} s^{2} + C_{16} C_{3} R_{24} R_{7} V_{1} s^{2} + C_{16} C_{3} R_{24} Rp_{1} V_{1} s^{2} + C_{3} C_{5} R_{24} R_{6} V_{1} s^{2} + C_{3} C_{5} R_{6} R_{7} V_{1} s^{2} + C_{3} C_{5} R_{6} Rp_{1} V_{1} s^{2} - C_{3} C_{5} R_{6} Rp_{1} V_{2} s^{2} + C_{3} R_{24} V_{1} s + C_{3} R_{6} V_{1} s - C_{3} R_{6} V_{2} s + C_{3} R_{7} V_{1} s + C_{3} Rp_{1} V_{1} s - C_{3} Rp_{1} V_{2} s}\)
= fraction(H_sym) #returns numerator and denominator sym_num, sym_denom
sym_num
\(\displaystyle - C_{16} C_{3} C_{5} R_{24} R_{6} R_{7} Rp_{1} V_{1} s^{3} - C_{16} C_{3} R_{24} R_{6} R_{7} V_{1} s^{2} - C_{16} C_{3} R_{24} R_{7} Rp_{1} V_{1} s^{2} - C_{16} C_{5} R_{24} R_{6} R_{7} V_{1} s^{2} - C_{16} C_{5} R_{24} R_{6} Rp_{1} V_{1} s^{2} - C_{16} R_{24} R_{6} V_{1} s - C_{16} R_{24} R_{7} V_{1} s - C_{16} R_{24} Rp_{1} V_{1} s - C_{3} C_{5} R_{24} R_{6} Rp_{1} V_{1} s^{2} - C_{3} C_{5} R_{6} R_{7} Rp_{1} V_{1} s^{2} - C_{3} R_{24} R_{6} V_{1} s - C_{3} R_{24} Rp_{1} V_{1} s - C_{3} R_{6} R_{7} V_{1} s - C_{3} R_{7} Rp_{1} V_{1} s - C_{5} R_{24} R_{6} V_{1} s - C_{5} R_{6} R_{7} V_{1} s - C_{5} R_{6} Rp_{1} V_{1} s - R_{24} V_{1} - R_{6} V_{1} - R_{7} V_{1} - Rp_{1} V_{1}\)
= solve(sym_num,s) nr
len(nr)
\(\displaystyle 3\)
0].subs(element_values))/(2*np.pi) N(nr[
\(\displaystyle -1198.55051381319 + 1.53728466142967 \cdot 10^{-13} i\)
0].free_symbols nr[
\(\displaystyle \left\{C_{16}, C_{3}, C_{5}, R_{24}, R_{6}, R_{7}, Rp_{1}\right\}\)
1].subs(element_values))/(2*np.pi) N(nr[
\(\displaystyle -279.870301857556 - 6.80987679360742 \cdot 10^{-13} i\)
1].free_symbols nr[
\(\displaystyle \left\{C_{16}, C_{3}, C_{5}, R_{24}, R_{6}, R_{7}, Rp_{1}\right\}\)
2].subs(element_values))/(2*np.pi) N(nr[
\(\displaystyle -12.0184161074726 + 5.27258661038143 \cdot 10^{-13} i\)
2].free_symbols nr[
\(\displaystyle \left\{C_{16}, C_{3}, C_{5}, R_{24}, R_{6}, R_{7}, Rp_{1}\right\}\)
sym_denom
\(\displaystyle C_{16} C_{3} C_{5} R_{24} R_{6} R_{7} V_{1} s^{3} + C_{16} C_{3} C_{5} R_{24} R_{6} Rp_{1} V_{1} s^{3} + C_{16} C_{3} R_{24} R_{6} V_{1} s^{2} + C_{16} C_{3} R_{24} R_{7} V_{1} s^{2} + C_{16} C_{3} R_{24} Rp_{1} V_{1} s^{2} + C_{3} C_{5} R_{24} R_{6} V_{1} s^{2} + C_{3} C_{5} R_{6} R_{7} V_{1} s^{2} + C_{3} C_{5} R_{6} Rp_{1} V_{1} s^{2} - C_{3} C_{5} R_{6} Rp_{1} V_{2} s^{2} + C_{3} R_{24} V_{1} s + C_{3} R_{6} V_{1} s - C_{3} R_{6} V_{2} s + C_{3} R_{7} V_{1} s + C_{3} Rp_{1} V_{1} s - C_{3} Rp_{1} V_{2} s\)
= solve(sym_denom,s) dr
len(dr)
\(\displaystyle 3\)
0].subs(element_values))/(2*np.pi) N(dr[
\(\displaystyle 0\)
0].free_symbols dr[
\(\displaystyle \left\{\right\}\)
1].subs(element_values))/(2*np.pi) N(dr[
\(\displaystyle -280.025615636318\)
1].free_symbols dr[
\(\displaystyle \left\{C_{16}, C_{5}, R_{24}, R_{6}, R_{7}, Rp_{1}, V_{1}, V_{2}\right\}\)
2].subs(element_values))/(2*np.pi) N(dr[
\(\displaystyle -13.1733592901789\)
2].free_symbols dr[
\(\displaystyle \left\{C_{16}, C_{5}, R_{24}, R_{6}, R_{7}, Rp_{1}, V_{1}, V_{2}\right\}\)
= '''
sum_path1a_v1_netlist * Klon-Centaur_sum_path1a_v1.asc
V1 1 0 1
C3 3 1 100e-9
R6 4 3 10e3
C5 4 3 68e-9
Rp1b1 0 4 50e3
Rp1a1 5 0 50e3
R10 6 5 2e3
R11 7 6 15e3
C7 7 6 82e-9
C8 2 7 390e-12
R12 2 7 422e3
R7 3 8 1.5e3
R24 9 8 15e3
O1b 7 4 2
C16 8 0 1e-6
V2 9 0 0
'''
= SymMNA.smna(sum_path1a_v1_netlist) report, network_df, i_unk_df, A, X, Z
Build the network equations
# Put matrices into SymPy
= Matrix(X)
X = Matrix(Z)
Z
= Eq(A*X,Z)
NE_sym
# display the equations
= ''
temp for i in range(shape(NE_sym.lhs)[0]):
+= '${:s} = {:s}$<br>'.format(latex(NE_sym.rhs[i]),latex(NE_sym.lhs[i]))
temp Markdown(temp)
\(0 = C_{3} s v_{1} - C_{3} s v_{3} + I_{V1}\)
\(0 = I_{O1b} + v_{2} \left(C_{8} s + \frac{1}{R_{12}}\right) + v_{7} \left(- C_{8} s - \frac{1}{R_{12}}\right)\)
\(0 = - C_{3} s v_{1} + v_{3} \left(C_{3} s + C_{5} s + \frac{1}{R_{7}} + \frac{1}{R_{6}}\right) + v_{4} \left(- C_{5} s - \frac{1}{R_{6}}\right) - \frac{v_{8}}{R_{7}}\)
\(0 = v_{3} \left(- C_{5} s - \frac{1}{R_{6}}\right) + v_{4} \left(C_{5} s + \frac{1}{Rp1b1} + \frac{1}{R_{6}}\right)\)
\(0 = v_{5} \cdot \left(\frac{1}{Rp1a1} + \frac{1}{R_{10}}\right) - \frac{v_{6}}{R_{10}}\)
\(0 = v_{6} \left(C_{7} s + \frac{1}{R_{11}} + \frac{1}{R_{10}}\right) + v_{7} \left(- C_{7} s - \frac{1}{R_{11}}\right) - \frac{v_{5}}{R_{10}}\)
\(0 = v_{2} \left(- C_{8} s - \frac{1}{R_{12}}\right) + v_{6} \left(- C_{7} s - \frac{1}{R_{11}}\right) + v_{7} \left(C_{7} s + C_{8} s + \frac{1}{R_{12}} + \frac{1}{R_{11}}\right)\)
\(0 = v_{8} \left(C_{16} s + \frac{1}{R_{7}} + \frac{1}{R_{24}}\right) - \frac{v_{3}}{R_{7}} - \frac{v_{9}}{R_{24}}\)
\(0 = I_{V2} - \frac{v_{8}}{R_{24}} + \frac{v_{9}}{R_{24}}\)
\(V_{1} = v_{1}\)
\(V_{2} = v_{9}\)
\(0 = - v_{4} + v_{7}\)
Turn the free symbols into SymPy variables.
str(NE_sym.free_symbols).replace('{','').replace('}','')) var(
\(\displaystyle \left( Rp1b1, \ v_{2}, \ v_{5}, \ I_{V1}, \ s, \ v_{9}, \ C_{3}, \ V_{1}, \ R_{10}, \ C_{8}, \ v_{7}, \ I_{O1b}, \ v_{3}, \ C_{7}, \ R_{6}, \ R_{24}, \ R_{7}, \ C_{5}, \ R_{12}, \ v_{1}, \ v_{4}, \ v_{8}, \ R_{11}, \ v_{6}, \ C_{16}, \ V_{2}, \ Rp1a1, \ I_{V2}\right)\)
= SymMNA.get_part_values(network_df) element_values
The network equations can be solved symbolically.
= solve(NE_sym,X) U_sym
Display the symbolic solution
temp = ’’ for i in U_sym.keys(): temp += ‘\({:s} = {:s}\)
’.format(latex(i),latex(U_sym[i]))
Markdown(temp)
Explanation of operation by looking at the pole and zero locations.
= cancel(U_sym[v2]/U_sym[v1])
H_sym H_sym
\(\displaystyle \frac{C_{16} C_{3} C_{5} C_{7} C_{8} R_{10} R_{11} R_{12} R_{24} R_{6} R_{7} Rp1b1 V_{1} s^{5} + C_{16} C_{3} C_{5} C_{7} C_{8} R_{11} R_{12} R_{24} R_{6} R_{7} Rp1a1 Rp1b1 V_{1} s^{5} + C_{16} C_{3} C_{5} C_{7} R_{10} R_{11} R_{24} R_{6} R_{7} Rp1b1 V_{1} s^{4} + C_{16} C_{3} C_{5} C_{7} R_{11} R_{12} R_{24} R_{6} R_{7} Rp1b1 V_{1} s^{4} + C_{16} C_{3} C_{5} C_{7} R_{11} R_{24} R_{6} R_{7} Rp1a1 Rp1b1 V_{1} s^{4} + C_{16} C_{3} C_{5} C_{8} R_{10} R_{12} R_{24} R_{6} R_{7} Rp1b1 V_{1} s^{4} + C_{16} C_{3} C_{5} C_{8} R_{11} R_{12} R_{24} R_{6} R_{7} Rp1b1 V_{1} s^{4} + C_{16} C_{3} C_{5} C_{8} R_{12} R_{24} R_{6} R_{7} Rp1a1 Rp1b1 V_{1} s^{4} + C_{16} C_{3} C_{5} R_{10} R_{24} R_{6} R_{7} Rp1b1 V_{1} s^{3} + C_{16} C_{3} C_{5} R_{11} R_{24} R_{6} R_{7} Rp1b1 V_{1} s^{3} + C_{16} C_{3} C_{5} R_{12} R_{24} R_{6} R_{7} Rp1b1 V_{1} s^{3} + C_{16} C_{3} C_{5} R_{24} R_{6} R_{7} Rp1a1 Rp1b1 V_{1} s^{3} + C_{16} C_{3} C_{7} C_{8} R_{10} R_{11} R_{12} R_{24} R_{7} Rp1b1 V_{1} s^{4} + C_{16} C_{3} C_{7} C_{8} R_{11} R_{12} R_{24} R_{7} Rp1a1 Rp1b1 V_{1} s^{4} + C_{16} C_{3} C_{7} R_{10} R_{11} R_{24} R_{7} Rp1b1 V_{1} s^{3} + C_{16} C_{3} C_{7} R_{11} R_{12} R_{24} R_{7} Rp1b1 V_{1} s^{3} + C_{16} C_{3} C_{7} R_{11} R_{24} R_{7} Rp1a1 Rp1b1 V_{1} s^{3} + C_{16} C_{3} C_{8} R_{10} R_{12} R_{24} R_{7} Rp1b1 V_{1} s^{3} + C_{16} C_{3} C_{8} R_{11} R_{12} R_{24} R_{7} Rp1b1 V_{1} s^{3} + C_{16} C_{3} C_{8} R_{12} R_{24} R_{7} Rp1a1 Rp1b1 V_{1} s^{3} + C_{16} C_{3} R_{10} R_{24} R_{7} Rp1b1 V_{1} s^{2} + C_{16} C_{3} R_{11} R_{24} R_{7} Rp1b1 V_{1} s^{2} + C_{16} C_{3} R_{12} R_{24} R_{7} Rp1b1 V_{1} s^{2} + C_{16} C_{3} R_{24} R_{7} Rp1a1 Rp1b1 V_{1} s^{2} + C_{3} C_{5} C_{7} C_{8} R_{10} R_{11} R_{12} R_{24} R_{6} Rp1b1 V_{1} s^{4} + C_{3} C_{5} C_{7} C_{8} R_{10} R_{11} R_{12} R_{6} R_{7} Rp1b1 V_{1} s^{4} + C_{3} C_{5} C_{7} C_{8} R_{11} R_{12} R_{24} R_{6} Rp1a1 Rp1b1 V_{1} s^{4} + C_{3} C_{5} C_{7} C_{8} R_{11} R_{12} R_{6} R_{7} Rp1a1 Rp1b1 V_{1} s^{4} + C_{3} C_{5} C_{7} R_{10} R_{11} R_{24} R_{6} Rp1b1 V_{1} s^{3} + C_{3} C_{5} C_{7} R_{10} R_{11} R_{6} R_{7} Rp1b1 V_{1} s^{3} + C_{3} C_{5} C_{7} R_{11} R_{12} R_{24} R_{6} Rp1b1 V_{1} s^{3} + C_{3} C_{5} C_{7} R_{11} R_{12} R_{6} R_{7} Rp1b1 V_{1} s^{3} + C_{3} C_{5} C_{7} R_{11} R_{24} R_{6} Rp1a1 Rp1b1 V_{1} s^{3} + C_{3} C_{5} C_{7} R_{11} R_{6} R_{7} Rp1a1 Rp1b1 V_{1} s^{3} + C_{3} C_{5} C_{8} R_{10} R_{12} R_{24} R_{6} Rp1b1 V_{1} s^{3} + C_{3} C_{5} C_{8} R_{10} R_{12} R_{6} R_{7} Rp1b1 V_{1} s^{3} + C_{3} C_{5} C_{8} R_{11} R_{12} R_{24} R_{6} Rp1b1 V_{1} s^{3} + C_{3} C_{5} C_{8} R_{11} R_{12} R_{6} R_{7} Rp1b1 V_{1} s^{3} + C_{3} C_{5} C_{8} R_{12} R_{24} R_{6} Rp1a1 Rp1b1 V_{1} s^{3} + C_{3} C_{5} C_{8} R_{12} R_{6} R_{7} Rp1a1 Rp1b1 V_{1} s^{3} + C_{3} C_{5} R_{10} R_{24} R_{6} Rp1b1 V_{1} s^{2} + C_{3} C_{5} R_{10} R_{6} R_{7} Rp1b1 V_{1} s^{2} + C_{3} C_{5} R_{11} R_{24} R_{6} Rp1b1 V_{1} s^{2} + C_{3} C_{5} R_{11} R_{6} R_{7} Rp1b1 V_{1} s^{2} + C_{3} C_{5} R_{12} R_{24} R_{6} Rp1b1 V_{1} s^{2} + C_{3} C_{5} R_{12} R_{6} R_{7} Rp1b1 V_{1} s^{2} + C_{3} C_{5} R_{24} R_{6} Rp1a1 Rp1b1 V_{1} s^{2} + C_{3} C_{5} R_{6} R_{7} Rp1a1 Rp1b1 V_{1} s^{2} + C_{3} C_{7} C_{8} R_{10} R_{11} R_{12} R_{24} Rp1b1 V_{1} s^{3} + C_{3} C_{7} C_{8} R_{10} R_{11} R_{12} R_{7} Rp1b1 V_{1} s^{3} + C_{3} C_{7} C_{8} R_{11} R_{12} R_{24} Rp1a1 Rp1b1 V_{1} s^{3} + C_{3} C_{7} C_{8} R_{11} R_{12} R_{7} Rp1a1 Rp1b1 V_{1} s^{3} + C_{3} C_{7} R_{10} R_{11} R_{24} Rp1b1 V_{1} s^{2} + C_{3} C_{7} R_{10} R_{11} R_{7} Rp1b1 V_{1} s^{2} + C_{3} C_{7} R_{11} R_{12} R_{24} Rp1b1 V_{1} s^{2} + C_{3} C_{7} R_{11} R_{12} R_{7} Rp1b1 V_{1} s^{2} + C_{3} C_{7} R_{11} R_{24} Rp1a1 Rp1b1 V_{1} s^{2} + C_{3} C_{7} R_{11} R_{7} Rp1a1 Rp1b1 V_{1} s^{2} + C_{3} C_{8} R_{10} R_{12} R_{24} Rp1b1 V_{1} s^{2} + C_{3} C_{8} R_{10} R_{12} R_{7} Rp1b1 V_{1} s^{2} + C_{3} C_{8} R_{11} R_{12} R_{24} Rp1b1 V_{1} s^{2} + C_{3} C_{8} R_{11} R_{12} R_{7} Rp1b1 V_{1} s^{2} + C_{3} C_{8} R_{12} R_{24} Rp1a1 Rp1b1 V_{1} s^{2} + C_{3} C_{8} R_{12} R_{7} Rp1a1 Rp1b1 V_{1} s^{2} + C_{3} R_{10} R_{24} Rp1b1 V_{1} s + C_{3} R_{10} R_{7} Rp1b1 V_{1} s + C_{3} R_{11} R_{24} Rp1b1 V_{1} s + C_{3} R_{11} R_{7} Rp1b1 V_{1} s + C_{3} R_{12} R_{24} Rp1b1 V_{1} s + C_{3} R_{12} R_{7} Rp1b1 V_{1} s + C_{3} R_{24} Rp1a1 Rp1b1 V_{1} s + C_{3} R_{7} Rp1a1 Rp1b1 V_{1} s + C_{5} C_{7} C_{8} R_{10} R_{11} R_{12} R_{6} Rp1b1 V_{2} s^{3} + C_{5} C_{7} C_{8} R_{11} R_{12} R_{6} Rp1a1 Rp1b1 V_{2} s^{3} + C_{5} C_{7} R_{10} R_{11} R_{6} Rp1b1 V_{2} s^{2} + C_{5} C_{7} R_{11} R_{12} R_{6} Rp1b1 V_{2} s^{2} + C_{5} C_{7} R_{11} R_{6} Rp1a1 Rp1b1 V_{2} s^{2} + C_{5} C_{8} R_{10} R_{12} R_{6} Rp1b1 V_{2} s^{2} + C_{5} C_{8} R_{11} R_{12} R_{6} Rp1b1 V_{2} s^{2} + C_{5} C_{8} R_{12} R_{6} Rp1a1 Rp1b1 V_{2} s^{2} + C_{5} R_{10} R_{6} Rp1b1 V_{2} s + C_{5} R_{11} R_{6} Rp1b1 V_{2} s + C_{5} R_{12} R_{6} Rp1b1 V_{2} s + C_{5} R_{6} Rp1a1 Rp1b1 V_{2} s + C_{7} C_{8} R_{10} R_{11} R_{12} Rp1b1 V_{2} s^{2} + C_{7} C_{8} R_{11} R_{12} Rp1a1 Rp1b1 V_{2} s^{2} + C_{7} R_{10} R_{11} Rp1b1 V_{2} s + C_{7} R_{11} R_{12} Rp1b1 V_{2} s + C_{7} R_{11} Rp1a1 Rp1b1 V_{2} s + C_{8} R_{10} R_{12} Rp1b1 V_{2} s + C_{8} R_{11} R_{12} Rp1b1 V_{2} s + C_{8} R_{12} Rp1a1 Rp1b1 V_{2} s + R_{10} Rp1b1 V_{2} + R_{11} Rp1b1 V_{2} + R_{12} Rp1b1 V_{2} + Rp1a1 Rp1b1 V_{2}}{C_{16} C_{3} C_{5} C_{7} C_{8} R_{10} R_{11} R_{12} R_{24} R_{6} R_{7} Rp1b1 V_{1} s^{5} + C_{16} C_{3} C_{5} C_{7} C_{8} R_{11} R_{12} R_{24} R_{6} R_{7} Rp1a1 Rp1b1 V_{1} s^{5} + C_{16} C_{3} C_{5} C_{7} R_{10} R_{11} R_{24} R_{6} R_{7} Rp1b1 V_{1} s^{4} + C_{16} C_{3} C_{5} C_{7} R_{11} R_{24} R_{6} R_{7} Rp1a1 Rp1b1 V_{1} s^{4} + C_{16} C_{3} C_{5} C_{8} R_{10} R_{12} R_{24} R_{6} R_{7} Rp1b1 V_{1} s^{4} + C_{16} C_{3} C_{5} C_{8} R_{11} R_{12} R_{24} R_{6} R_{7} Rp1b1 V_{1} s^{4} + C_{16} C_{3} C_{5} C_{8} R_{12} R_{24} R_{6} R_{7} Rp1a1 Rp1b1 V_{1} s^{4} + C_{16} C_{3} C_{5} R_{10} R_{24} R_{6} R_{7} Rp1b1 V_{1} s^{3} + C_{16} C_{3} C_{5} R_{11} R_{24} R_{6} R_{7} Rp1b1 V_{1} s^{3} + C_{16} C_{3} C_{5} R_{24} R_{6} R_{7} Rp1a1 Rp1b1 V_{1} s^{3} + C_{16} C_{3} C_{7} C_{8} R_{10} R_{11} R_{12} R_{24} R_{6} R_{7} V_{1} s^{4} + C_{16} C_{3} C_{7} C_{8} R_{10} R_{11} R_{12} R_{24} R_{7} Rp1b1 V_{1} s^{4} + C_{16} C_{3} C_{7} C_{8} R_{11} R_{12} R_{24} R_{6} R_{7} Rp1a1 V_{1} s^{4} + C_{16} C_{3} C_{7} C_{8} R_{11} R_{12} R_{24} R_{7} Rp1a1 Rp1b1 V_{1} s^{4} + C_{16} C_{3} C_{7} R_{10} R_{11} R_{24} R_{6} R_{7} V_{1} s^{3} + C_{16} C_{3} C_{7} R_{10} R_{11} R_{24} R_{7} Rp1b1 V_{1} s^{3} + C_{16} C_{3} C_{7} R_{11} R_{24} R_{6} R_{7} Rp1a1 V_{1} s^{3} + C_{16} C_{3} C_{7} R_{11} R_{24} R_{7} Rp1a1 Rp1b1 V_{1} s^{3} + C_{16} C_{3} C_{8} R_{10} R_{12} R_{24} R_{6} R_{7} V_{1} s^{3} + C_{16} C_{3} C_{8} R_{10} R_{12} R_{24} R_{7} Rp1b1 V_{1} s^{3} + C_{16} C_{3} C_{8} R_{11} R_{12} R_{24} R_{6} R_{7} V_{1} s^{3} + C_{16} C_{3} C_{8} R_{11} R_{12} R_{24} R_{7} Rp1b1 V_{1} s^{3} + C_{16} C_{3} C_{8} R_{12} R_{24} R_{6} R_{7} Rp1a1 V_{1} s^{3} + C_{16} C_{3} C_{8} R_{12} R_{24} R_{7} Rp1a1 Rp1b1 V_{1} s^{3} + C_{16} C_{3} R_{10} R_{24} R_{6} R_{7} V_{1} s^{2} + C_{16} C_{3} R_{10} R_{24} R_{7} Rp1b1 V_{1} s^{2} + C_{16} C_{3} R_{11} R_{24} R_{6} R_{7} V_{1} s^{2} + C_{16} C_{3} R_{11} R_{24} R_{7} Rp1b1 V_{1} s^{2} + C_{16} C_{3} R_{24} R_{6} R_{7} Rp1a1 V_{1} s^{2} + C_{16} C_{3} R_{24} R_{7} Rp1a1 Rp1b1 V_{1} s^{2} + C_{16} C_{5} C_{7} C_{8} R_{10} R_{11} R_{12} R_{24} R_{6} R_{7} V_{1} s^{4} + C_{16} C_{5} C_{7} C_{8} R_{10} R_{11} R_{12} R_{24} R_{6} Rp1b1 V_{1} s^{4} + C_{16} C_{5} C_{7} C_{8} R_{11} R_{12} R_{24} R_{6} R_{7} Rp1a1 V_{1} s^{4} + C_{16} C_{5} C_{7} C_{8} R_{11} R_{12} R_{24} R_{6} Rp1a1 Rp1b1 V_{1} s^{4} + C_{16} C_{5} C_{7} R_{10} R_{11} R_{24} R_{6} R_{7} V_{1} s^{3} + C_{16} C_{5} C_{7} R_{10} R_{11} R_{24} R_{6} Rp1b1 V_{1} s^{3} + C_{16} C_{5} C_{7} R_{11} R_{24} R_{6} R_{7} Rp1a1 V_{1} s^{3} + C_{16} C_{5} C_{7} R_{11} R_{24} R_{6} Rp1a1 Rp1b1 V_{1} s^{3} + C_{16} C_{5} C_{8} R_{10} R_{12} R_{24} R_{6} R_{7} V_{1} s^{3} + C_{16} C_{5} C_{8} R_{10} R_{12} R_{24} R_{6} Rp1b1 V_{1} s^{3} + C_{16} C_{5} C_{8} R_{11} R_{12} R_{24} R_{6} R_{7} V_{1} s^{3} + C_{16} C_{5} C_{8} R_{11} R_{12} R_{24} R_{6} Rp1b1 V_{1} s^{3} + C_{16} C_{5} C_{8} R_{12} R_{24} R_{6} R_{7} Rp1a1 V_{1} s^{3} + C_{16} C_{5} C_{8} R_{12} R_{24} R_{6} Rp1a1 Rp1b1 V_{1} s^{3} + C_{16} C_{5} R_{10} R_{24} R_{6} R_{7} V_{1} s^{2} + C_{16} C_{5} R_{10} R_{24} R_{6} Rp1b1 V_{1} s^{2} + C_{16} C_{5} R_{11} R_{24} R_{6} R_{7} V_{1} s^{2} + C_{16} C_{5} R_{11} R_{24} R_{6} Rp1b1 V_{1} s^{2} + C_{16} C_{5} R_{24} R_{6} R_{7} Rp1a1 V_{1} s^{2} + C_{16} C_{5} R_{24} R_{6} Rp1a1 Rp1b1 V_{1} s^{2} + C_{16} C_{7} C_{8} R_{10} R_{11} R_{12} R_{24} R_{6} V_{1} s^{3} + C_{16} C_{7} C_{8} R_{10} R_{11} R_{12} R_{24} R_{7} V_{1} s^{3} + C_{16} C_{7} C_{8} R_{10} R_{11} R_{12} R_{24} Rp1b1 V_{1} s^{3} + C_{16} C_{7} C_{8} R_{11} R_{12} R_{24} R_{6} Rp1a1 V_{1} s^{3} + C_{16} C_{7} C_{8} R_{11} R_{12} R_{24} R_{7} Rp1a1 V_{1} s^{3} + C_{16} C_{7} C_{8} R_{11} R_{12} R_{24} Rp1a1 Rp1b1 V_{1} s^{3} + C_{16} C_{7} R_{10} R_{11} R_{24} R_{6} V_{1} s^{2} + C_{16} C_{7} R_{10} R_{11} R_{24} R_{7} V_{1} s^{2} + C_{16} C_{7} R_{10} R_{11} R_{24} Rp1b1 V_{1} s^{2} + C_{16} C_{7} R_{11} R_{24} R_{6} Rp1a1 V_{1} s^{2} + C_{16} C_{7} R_{11} R_{24} R_{7} Rp1a1 V_{1} s^{2} + C_{16} C_{7} R_{11} R_{24} Rp1a1 Rp1b1 V_{1} s^{2} + C_{16} C_{8} R_{10} R_{12} R_{24} R_{6} V_{1} s^{2} + C_{16} C_{8} R_{10} R_{12} R_{24} R_{7} V_{1} s^{2} + C_{16} C_{8} R_{10} R_{12} R_{24} Rp1b1 V_{1} s^{2} + C_{16} C_{8} R_{11} R_{12} R_{24} R_{6} V_{1} s^{2} + C_{16} C_{8} R_{11} R_{12} R_{24} R_{7} V_{1} s^{2} + C_{16} C_{8} R_{11} R_{12} R_{24} Rp1b1 V_{1} s^{2} + C_{16} C_{8} R_{12} R_{24} R_{6} Rp1a1 V_{1} s^{2} + C_{16} C_{8} R_{12} R_{24} R_{7} Rp1a1 V_{1} s^{2} + C_{16} C_{8} R_{12} R_{24} Rp1a1 Rp1b1 V_{1} s^{2} + C_{16} R_{10} R_{24} R_{6} V_{1} s + C_{16} R_{10} R_{24} R_{7} V_{1} s + C_{16} R_{10} R_{24} Rp1b1 V_{1} s + C_{16} R_{11} R_{24} R_{6} V_{1} s + C_{16} R_{11} R_{24} R_{7} V_{1} s + C_{16} R_{11} R_{24} Rp1b1 V_{1} s + C_{16} R_{24} R_{6} Rp1a1 V_{1} s + C_{16} R_{24} R_{7} Rp1a1 V_{1} s + C_{16} R_{24} Rp1a1 Rp1b1 V_{1} s + C_{3} C_{5} C_{7} C_{8} R_{10} R_{11} R_{12} R_{24} R_{6} Rp1b1 V_{1} s^{4} + C_{3} C_{5} C_{7} C_{8} R_{10} R_{11} R_{12} R_{6} R_{7} Rp1b1 V_{1} s^{4} + C_{3} C_{5} C_{7} C_{8} R_{11} R_{12} R_{24} R_{6} Rp1a1 Rp1b1 V_{1} s^{4} + C_{3} C_{5} C_{7} C_{8} R_{11} R_{12} R_{6} R_{7} Rp1a1 Rp1b1 V_{1} s^{4} + C_{3} C_{5} C_{7} R_{10} R_{11} R_{24} R_{6} Rp1b1 V_{1} s^{3} + C_{3} C_{5} C_{7} R_{10} R_{11} R_{6} R_{7} Rp1b1 V_{1} s^{3} + C_{3} C_{5} C_{7} R_{11} R_{24} R_{6} Rp1a1 Rp1b1 V_{1} s^{3} + C_{3} C_{5} C_{7} R_{11} R_{6} R_{7} Rp1a1 Rp1b1 V_{1} s^{3} + C_{3} C_{5} C_{8} R_{10} R_{12} R_{24} R_{6} Rp1b1 V_{1} s^{3} + C_{3} C_{5} C_{8} R_{10} R_{12} R_{6} R_{7} Rp1b1 V_{1} s^{3} + C_{3} C_{5} C_{8} R_{11} R_{12} R_{24} R_{6} Rp1b1 V_{1} s^{3} + C_{3} C_{5} C_{8} R_{11} R_{12} R_{6} R_{7} Rp1b1 V_{1} s^{3} + C_{3} C_{5} C_{8} R_{12} R_{24} R_{6} Rp1a1 Rp1b1 V_{1} s^{3} + C_{3} C_{5} C_{8} R_{12} R_{6} R_{7} Rp1a1 Rp1b1 V_{1} s^{3} + C_{3} C_{5} R_{10} R_{24} R_{6} Rp1b1 V_{1} s^{2} + C_{3} C_{5} R_{10} R_{6} R_{7} Rp1b1 V_{1} s^{2} + C_{3} C_{5} R_{11} R_{24} R_{6} Rp1b1 V_{1} s^{2} + C_{3} C_{5} R_{11} R_{6} R_{7} Rp1b1 V_{1} s^{2} + C_{3} C_{5} R_{24} R_{6} Rp1a1 Rp1b1 V_{1} s^{2} + C_{3} C_{5} R_{6} R_{7} Rp1a1 Rp1b1 V_{1} s^{2} + C_{3} C_{7} C_{8} R_{10} R_{11} R_{12} R_{24} R_{6} V_{1} s^{3} + C_{3} C_{7} C_{8} R_{10} R_{11} R_{12} R_{24} Rp1b1 V_{1} s^{3} + C_{3} C_{7} C_{8} R_{10} R_{11} R_{12} R_{6} R_{7} V_{1} s^{3} + C_{3} C_{7} C_{8} R_{10} R_{11} R_{12} R_{7} Rp1b1 V_{1} s^{3} + C_{3} C_{7} C_{8} R_{11} R_{12} R_{24} R_{6} Rp1a1 V_{1} s^{3} + C_{3} C_{7} C_{8} R_{11} R_{12} R_{24} Rp1a1 Rp1b1 V_{1} s^{3} + C_{3} C_{7} C_{8} R_{11} R_{12} R_{6} R_{7} Rp1a1 V_{1} s^{3} + C_{3} C_{7} C_{8} R_{11} R_{12} R_{7} Rp1a1 Rp1b1 V_{1} s^{3} + C_{3} C_{7} R_{10} R_{11} R_{24} R_{6} V_{1} s^{2} + C_{3} C_{7} R_{10} R_{11} R_{24} Rp1b1 V_{1} s^{2} + C_{3} C_{7} R_{10} R_{11} R_{6} R_{7} V_{1} s^{2} + C_{3} C_{7} R_{10} R_{11} R_{7} Rp1b1 V_{1} s^{2} + C_{3} C_{7} R_{11} R_{24} R_{6} Rp1a1 V_{1} s^{2} + C_{3} C_{7} R_{11} R_{24} Rp1a1 Rp1b1 V_{1} s^{2} + C_{3} C_{7} R_{11} R_{6} R_{7} Rp1a1 V_{1} s^{2} + C_{3} C_{7} R_{11} R_{7} Rp1a1 Rp1b1 V_{1} s^{2} + C_{3} C_{8} R_{10} R_{12} R_{24} R_{6} V_{1} s^{2} + C_{3} C_{8} R_{10} R_{12} R_{24} Rp1b1 V_{1} s^{2} + C_{3} C_{8} R_{10} R_{12} R_{6} R_{7} V_{1} s^{2} + C_{3} C_{8} R_{10} R_{12} R_{7} Rp1b1 V_{1} s^{2} + C_{3} C_{8} R_{11} R_{12} R_{24} R_{6} V_{1} s^{2} + C_{3} C_{8} R_{11} R_{12} R_{24} Rp1b1 V_{1} s^{2} + C_{3} C_{8} R_{11} R_{12} R_{6} R_{7} V_{1} s^{2} + C_{3} C_{8} R_{11} R_{12} R_{7} Rp1b1 V_{1} s^{2} + C_{3} C_{8} R_{12} R_{24} R_{6} Rp1a1 V_{1} s^{2} + C_{3} C_{8} R_{12} R_{24} Rp1a1 Rp1b1 V_{1} s^{2} + C_{3} C_{8} R_{12} R_{6} R_{7} Rp1a1 V_{1} s^{2} + C_{3} C_{8} R_{12} R_{7} Rp1a1 Rp1b1 V_{1} s^{2} + C_{3} R_{10} R_{24} R_{6} V_{1} s + C_{3} R_{10} R_{24} Rp1b1 V_{1} s + C_{3} R_{10} R_{6} R_{7} V_{1} s + C_{3} R_{10} R_{7} Rp1b1 V_{1} s + C_{3} R_{11} R_{24} R_{6} V_{1} s + C_{3} R_{11} R_{24} Rp1b1 V_{1} s + C_{3} R_{11} R_{6} R_{7} V_{1} s + C_{3} R_{11} R_{7} Rp1b1 V_{1} s + C_{3} R_{24} R_{6} Rp1a1 V_{1} s + C_{3} R_{24} Rp1a1 Rp1b1 V_{1} s + C_{3} R_{6} R_{7} Rp1a1 V_{1} s + C_{3} R_{7} Rp1a1 Rp1b1 V_{1} s + C_{5} C_{7} C_{8} R_{10} R_{11} R_{12} R_{24} R_{6} V_{1} s^{3} + C_{5} C_{7} C_{8} R_{10} R_{11} R_{12} R_{6} R_{7} V_{1} s^{3} + C_{5} C_{7} C_{8} R_{10} R_{11} R_{12} R_{6} Rp1b1 V_{1} s^{3} + C_{5} C_{7} C_{8} R_{11} R_{12} R_{24} R_{6} Rp1a1 V_{1} s^{3} + C_{5} C_{7} C_{8} R_{11} R_{12} R_{6} R_{7} Rp1a1 V_{1} s^{3} + C_{5} C_{7} C_{8} R_{11} R_{12} R_{6} Rp1a1 Rp1b1 V_{1} s^{3} + C_{5} C_{7} R_{10} R_{11} R_{24} R_{6} V_{1} s^{2} + C_{5} C_{7} R_{10} R_{11} R_{6} R_{7} V_{1} s^{2} + C_{5} C_{7} R_{10} R_{11} R_{6} Rp1b1 V_{1} s^{2} + C_{5} C_{7} R_{11} R_{24} R_{6} Rp1a1 V_{1} s^{2} + C_{5} C_{7} R_{11} R_{6} R_{7} Rp1a1 V_{1} s^{2} + C_{5} C_{7} R_{11} R_{6} Rp1a1 Rp1b1 V_{1} s^{2} + C_{5} C_{8} R_{10} R_{12} R_{24} R_{6} V_{1} s^{2} + C_{5} C_{8} R_{10} R_{12} R_{6} R_{7} V_{1} s^{2} + C_{5} C_{8} R_{10} R_{12} R_{6} Rp1b1 V_{1} s^{2} + C_{5} C_{8} R_{11} R_{12} R_{24} R_{6} V_{1} s^{2} + C_{5} C_{8} R_{11} R_{12} R_{6} R_{7} V_{1} s^{2} + C_{5} C_{8} R_{11} R_{12} R_{6} Rp1b1 V_{1} s^{2} + C_{5} C_{8} R_{12} R_{24} R_{6} Rp1a1 V_{1} s^{2} + C_{5} C_{8} R_{12} R_{6} R_{7} Rp1a1 V_{1} s^{2} + C_{5} C_{8} R_{12} R_{6} Rp1a1 Rp1b1 V_{1} s^{2} + C_{5} R_{10} R_{24} R_{6} V_{1} s + C_{5} R_{10} R_{6} R_{7} V_{1} s + C_{5} R_{10} R_{6} Rp1b1 V_{1} s + C_{5} R_{11} R_{24} R_{6} V_{1} s + C_{5} R_{11} R_{6} R_{7} V_{1} s + C_{5} R_{11} R_{6} Rp1b1 V_{1} s + C_{5} R_{24} R_{6} Rp1a1 V_{1} s + C_{5} R_{6} R_{7} Rp1a1 V_{1} s + C_{5} R_{6} Rp1a1 Rp1b1 V_{1} s + C_{7} C_{8} R_{10} R_{11} R_{12} R_{24} V_{1} s^{2} + C_{7} C_{8} R_{10} R_{11} R_{12} R_{6} V_{1} s^{2} + C_{7} C_{8} R_{10} R_{11} R_{12} R_{7} V_{1} s^{2} + C_{7} C_{8} R_{10} R_{11} R_{12} Rp1b1 V_{1} s^{2} + C_{7} C_{8} R_{11} R_{12} R_{24} Rp1a1 V_{1} s^{2} + C_{7} C_{8} R_{11} R_{12} R_{6} Rp1a1 V_{1} s^{2} + C_{7} C_{8} R_{11} R_{12} R_{7} Rp1a1 V_{1} s^{2} + C_{7} C_{8} R_{11} R_{12} Rp1a1 Rp1b1 V_{1} s^{2} + C_{7} R_{10} R_{11} R_{24} V_{1} s + C_{7} R_{10} R_{11} R_{6} V_{1} s + C_{7} R_{10} R_{11} R_{7} V_{1} s + C_{7} R_{10} R_{11} Rp1b1 V_{1} s + C_{7} R_{11} R_{24} Rp1a1 V_{1} s + C_{7} R_{11} R_{6} Rp1a1 V_{1} s + C_{7} R_{11} R_{7} Rp1a1 V_{1} s + C_{7} R_{11} Rp1a1 Rp1b1 V_{1} s + C_{8} R_{10} R_{12} R_{24} V_{1} s + C_{8} R_{10} R_{12} R_{6} V_{1} s + C_{8} R_{10} R_{12} R_{7} V_{1} s + C_{8} R_{10} R_{12} Rp1b1 V_{1} s + C_{8} R_{11} R_{12} R_{24} V_{1} s + C_{8} R_{11} R_{12} R_{6} V_{1} s + C_{8} R_{11} R_{12} R_{7} V_{1} s + C_{8} R_{11} R_{12} Rp1b1 V_{1} s + C_{8} R_{12} R_{24} Rp1a1 V_{1} s + C_{8} R_{12} R_{6} Rp1a1 V_{1} s + C_{8} R_{12} R_{7} Rp1a1 V_{1} s + C_{8} R_{12} Rp1a1 Rp1b1 V_{1} s + R_{10} R_{24} V_{1} + R_{10} R_{6} V_{1} + R_{10} R_{7} V_{1} + R_{10} Rp1b1 V_{1} + R_{11} R_{24} V_{1} + R_{11} R_{6} V_{1} + R_{11} R_{7} V_{1} + R_{11} Rp1b1 V_{1} + R_{24} Rp1a1 V_{1} + R_{6} Rp1a1 V_{1} + R_{7} Rp1a1 V_{1} + Rp1a1 Rp1b1 V_{1}}\)
= fraction(H_sym) #returns numerator and denominator sym_num, sym_denom
sym_num.subs(element_values)
\(\displaystyle 8.052800652 \cdot 10^{-7} s^{5} + 0.04721935889448 s^{4} + 138.433239882 s^{3} + 131454.26595 s^{2} + 40342500.0 s\)
sym_num
\(\displaystyle C_{16} C_{3} C_{5} C_{7} C_{8} R_{10} R_{11} R_{12} R_{24} R_{6} R_{7} Rp1b1 V_{1} s^{5} + C_{16} C_{3} C_{5} C_{7} C_{8} R_{11} R_{12} R_{24} R_{6} R_{7} Rp1a1 Rp1b1 V_{1} s^{5} + C_{16} C_{3} C_{5} C_{7} R_{10} R_{11} R_{24} R_{6} R_{7} Rp1b1 V_{1} s^{4} + C_{16} C_{3} C_{5} C_{7} R_{11} R_{12} R_{24} R_{6} R_{7} Rp1b1 V_{1} s^{4} + C_{16} C_{3} C_{5} C_{7} R_{11} R_{24} R_{6} R_{7} Rp1a1 Rp1b1 V_{1} s^{4} + C_{16} C_{3} C_{5} C_{8} R_{10} R_{12} R_{24} R_{6} R_{7} Rp1b1 V_{1} s^{4} + C_{16} C_{3} C_{5} C_{8} R_{11} R_{12} R_{24} R_{6} R_{7} Rp1b1 V_{1} s^{4} + C_{16} C_{3} C_{5} C_{8} R_{12} R_{24} R_{6} R_{7} Rp1a1 Rp1b1 V_{1} s^{4} + C_{16} C_{3} C_{5} R_{10} R_{24} R_{6} R_{7} Rp1b1 V_{1} s^{3} + C_{16} C_{3} C_{5} R_{11} R_{24} R_{6} R_{7} Rp1b1 V_{1} s^{3} + C_{16} C_{3} C_{5} R_{12} R_{24} R_{6} R_{7} Rp1b1 V_{1} s^{3} + C_{16} C_{3} C_{5} R_{24} R_{6} R_{7} Rp1a1 Rp1b1 V_{1} s^{3} + C_{16} C_{3} C_{7} C_{8} R_{10} R_{11} R_{12} R_{24} R_{7} Rp1b1 V_{1} s^{4} + C_{16} C_{3} C_{7} C_{8} R_{11} R_{12} R_{24} R_{7} Rp1a1 Rp1b1 V_{1} s^{4} + C_{16} C_{3} C_{7} R_{10} R_{11} R_{24} R_{7} Rp1b1 V_{1} s^{3} + C_{16} C_{3} C_{7} R_{11} R_{12} R_{24} R_{7} Rp1b1 V_{1} s^{3} + C_{16} C_{3} C_{7} R_{11} R_{24} R_{7} Rp1a1 Rp1b1 V_{1} s^{3} + C_{16} C_{3} C_{8} R_{10} R_{12} R_{24} R_{7} Rp1b1 V_{1} s^{3} + C_{16} C_{3} C_{8} R_{11} R_{12} R_{24} R_{7} Rp1b1 V_{1} s^{3} + C_{16} C_{3} C_{8} R_{12} R_{24} R_{7} Rp1a1 Rp1b1 V_{1} s^{3} + C_{16} C_{3} R_{10} R_{24} R_{7} Rp1b1 V_{1} s^{2} + C_{16} C_{3} R_{11} R_{24} R_{7} Rp1b1 V_{1} s^{2} + C_{16} C_{3} R_{12} R_{24} R_{7} Rp1b1 V_{1} s^{2} + C_{16} C_{3} R_{24} R_{7} Rp1a1 Rp1b1 V_{1} s^{2} + C_{3} C_{5} C_{7} C_{8} R_{10} R_{11} R_{12} R_{24} R_{6} Rp1b1 V_{1} s^{4} + C_{3} C_{5} C_{7} C_{8} R_{10} R_{11} R_{12} R_{6} R_{7} Rp1b1 V_{1} s^{4} + C_{3} C_{5} C_{7} C_{8} R_{11} R_{12} R_{24} R_{6} Rp1a1 Rp1b1 V_{1} s^{4} + C_{3} C_{5} C_{7} C_{8} R_{11} R_{12} R_{6} R_{7} Rp1a1 Rp1b1 V_{1} s^{4} + C_{3} C_{5} C_{7} R_{10} R_{11} R_{24} R_{6} Rp1b1 V_{1} s^{3} + C_{3} C_{5} C_{7} R_{10} R_{11} R_{6} R_{7} Rp1b1 V_{1} s^{3} + C_{3} C_{5} C_{7} R_{11} R_{12} R_{24} R_{6} Rp1b1 V_{1} s^{3} + C_{3} C_{5} C_{7} R_{11} R_{12} R_{6} R_{7} Rp1b1 V_{1} s^{3} + C_{3} C_{5} C_{7} R_{11} R_{24} R_{6} Rp1a1 Rp1b1 V_{1} s^{3} + C_{3} C_{5} C_{7} R_{11} R_{6} R_{7} Rp1a1 Rp1b1 V_{1} s^{3} + C_{3} C_{5} C_{8} R_{10} R_{12} R_{24} R_{6} Rp1b1 V_{1} s^{3} + C_{3} C_{5} C_{8} R_{10} R_{12} R_{6} R_{7} Rp1b1 V_{1} s^{3} + C_{3} C_{5} C_{8} R_{11} R_{12} R_{24} R_{6} Rp1b1 V_{1} s^{3} + C_{3} C_{5} C_{8} R_{11} R_{12} R_{6} R_{7} Rp1b1 V_{1} s^{3} + C_{3} C_{5} C_{8} R_{12} R_{24} R_{6} Rp1a1 Rp1b1 V_{1} s^{3} + C_{3} C_{5} C_{8} R_{12} R_{6} R_{7} Rp1a1 Rp1b1 V_{1} s^{3} + C_{3} C_{5} R_{10} R_{24} R_{6} Rp1b1 V_{1} s^{2} + C_{3} C_{5} R_{10} R_{6} R_{7} Rp1b1 V_{1} s^{2} + C_{3} C_{5} R_{11} R_{24} R_{6} Rp1b1 V_{1} s^{2} + C_{3} C_{5} R_{11} R_{6} R_{7} Rp1b1 V_{1} s^{2} + C_{3} C_{5} R_{12} R_{24} R_{6} Rp1b1 V_{1} s^{2} + C_{3} C_{5} R_{12} R_{6} R_{7} Rp1b1 V_{1} s^{2} + C_{3} C_{5} R_{24} R_{6} Rp1a1 Rp1b1 V_{1} s^{2} + C_{3} C_{5} R_{6} R_{7} Rp1a1 Rp1b1 V_{1} s^{2} + C_{3} C_{7} C_{8} R_{10} R_{11} R_{12} R_{24} Rp1b1 V_{1} s^{3} + C_{3} C_{7} C_{8} R_{10} R_{11} R_{12} R_{7} Rp1b1 V_{1} s^{3} + C_{3} C_{7} C_{8} R_{11} R_{12} R_{24} Rp1a1 Rp1b1 V_{1} s^{3} + C_{3} C_{7} C_{8} R_{11} R_{12} R_{7} Rp1a1 Rp1b1 V_{1} s^{3} + C_{3} C_{7} R_{10} R_{11} R_{24} Rp1b1 V_{1} s^{2} + C_{3} C_{7} R_{10} R_{11} R_{7} Rp1b1 V_{1} s^{2} + C_{3} C_{7} R_{11} R_{12} R_{24} Rp1b1 V_{1} s^{2} + C_{3} C_{7} R_{11} R_{12} R_{7} Rp1b1 V_{1} s^{2} + C_{3} C_{7} R_{11} R_{24} Rp1a1 Rp1b1 V_{1} s^{2} + C_{3} C_{7} R_{11} R_{7} Rp1a1 Rp1b1 V_{1} s^{2} + C_{3} C_{8} R_{10} R_{12} R_{24} Rp1b1 V_{1} s^{2} + C_{3} C_{8} R_{10} R_{12} R_{7} Rp1b1 V_{1} s^{2} + C_{3} C_{8} R_{11} R_{12} R_{24} Rp1b1 V_{1} s^{2} + C_{3} C_{8} R_{11} R_{12} R_{7} Rp1b1 V_{1} s^{2} + C_{3} C_{8} R_{12} R_{24} Rp1a1 Rp1b1 V_{1} s^{2} + C_{3} C_{8} R_{12} R_{7} Rp1a1 Rp1b1 V_{1} s^{2} + C_{3} R_{10} R_{24} Rp1b1 V_{1} s + C_{3} R_{10} R_{7} Rp1b1 V_{1} s + C_{3} R_{11} R_{24} Rp1b1 V_{1} s + C_{3} R_{11} R_{7} Rp1b1 V_{1} s + C_{3} R_{12} R_{24} Rp1b1 V_{1} s + C_{3} R_{12} R_{7} Rp1b1 V_{1} s + C_{3} R_{24} Rp1a1 Rp1b1 V_{1} s + C_{3} R_{7} Rp1a1 Rp1b1 V_{1} s + C_{5} C_{7} C_{8} R_{10} R_{11} R_{12} R_{6} Rp1b1 V_{2} s^{3} + C_{5} C_{7} C_{8} R_{11} R_{12} R_{6} Rp1a1 Rp1b1 V_{2} s^{3} + C_{5} C_{7} R_{10} R_{11} R_{6} Rp1b1 V_{2} s^{2} + C_{5} C_{7} R_{11} R_{12} R_{6} Rp1b1 V_{2} s^{2} + C_{5} C_{7} R_{11} R_{6} Rp1a1 Rp1b1 V_{2} s^{2} + C_{5} C_{8} R_{10} R_{12} R_{6} Rp1b1 V_{2} s^{2} + C_{5} C_{8} R_{11} R_{12} R_{6} Rp1b1 V_{2} s^{2} + C_{5} C_{8} R_{12} R_{6} Rp1a1 Rp1b1 V_{2} s^{2} + C_{5} R_{10} R_{6} Rp1b1 V_{2} s + C_{5} R_{11} R_{6} Rp1b1 V_{2} s + C_{5} R_{12} R_{6} Rp1b1 V_{2} s + C_{5} R_{6} Rp1a1 Rp1b1 V_{2} s + C_{7} C_{8} R_{10} R_{11} R_{12} Rp1b1 V_{2} s^{2} + C_{7} C_{8} R_{11} R_{12} Rp1a1 Rp1b1 V_{2} s^{2} + C_{7} R_{10} R_{11} Rp1b1 V_{2} s + C_{7} R_{11} R_{12} Rp1b1 V_{2} s + C_{7} R_{11} Rp1a1 Rp1b1 V_{2} s + C_{8} R_{10} R_{12} Rp1b1 V_{2} s + C_{8} R_{11} R_{12} Rp1b1 V_{2} s + C_{8} R_{12} Rp1a1 Rp1b1 V_{2} s + R_{10} Rp1b1 V_{2} + R_{11} Rp1b1 V_{2} + R_{12} Rp1b1 V_{2} + Rp1a1 Rp1b1 V_{2}\)
= solve(sym_num,s) nr
len(nr)
\(\displaystyle 5\)
0].subs(element_values))/(2*np.pi) N(nr[
\(\displaystyle -234.051386899846\)
0].free_symbols nr[
\(\displaystyle \left\{C_{5}, R_{6}\right\}\)
1].subs(element_values))/(2*np.pi) N(nr[
\(\displaystyle -8848.65333990331\)
1].free_symbols nr[
\(\displaystyle \left\{C_{7}, C_{8}, R_{10}, R_{11}, R_{12}, Rp1a1\right\}\)
2].subs(element_values))/(2*np.pi) N(nr[
\(\displaystyle -132.980030458265\)
2].free_symbols nr[
\(\displaystyle \left\{C_{7}, C_{8}, R_{10}, R_{11}, R_{12}, Rp1a1\right\}\)
3].subs(element_values))/(2*np.pi) N(nr[
\(\displaystyle -116.713624934057\)
3].free_symbols nr[
\(\displaystyle \left\{C_{16}, C_{3}, R_{24}, R_{7}, V_{1}, V_{2}\right\}\)
4].subs(element_values))/(2*np.pi) N(nr[
\(\displaystyle -1.36532531823375 \cdot 10^{-14}\)
4].free_symbols nr[
\(\displaystyle \left\{C_{16}, C_{3}, R_{24}, R_{7}, V_{1}, V_{2}\right\}\)
sym_denom.subs(element_values)
\(\displaystyle 8.052800652 \cdot 10^{-7} s^{5} + 0.01327770575352 s^{4} + 70.074953839296 s^{3} + 128794.0633644 s^{2} + 77206734.79 s + 5125500000.0\)
sym_denom
\(\displaystyle C_{16} C_{3} C_{5} C_{7} C_{8} R_{10} R_{11} R_{12} R_{24} R_{6} R_{7} Rp1b1 V_{1} s^{5} + C_{16} C_{3} C_{5} C_{7} C_{8} R_{11} R_{12} R_{24} R_{6} R_{7} Rp1a1 Rp1b1 V_{1} s^{5} + C_{16} C_{3} C_{5} C_{7} R_{10} R_{11} R_{24} R_{6} R_{7} Rp1b1 V_{1} s^{4} + C_{16} C_{3} C_{5} C_{7} R_{11} R_{24} R_{6} R_{7} Rp1a1 Rp1b1 V_{1} s^{4} + C_{16} C_{3} C_{5} C_{8} R_{10} R_{12} R_{24} R_{6} R_{7} Rp1b1 V_{1} s^{4} + C_{16} C_{3} C_{5} C_{8} R_{11} R_{12} R_{24} R_{6} R_{7} Rp1b1 V_{1} s^{4} + C_{16} C_{3} C_{5} C_{8} R_{12} R_{24} R_{6} R_{7} Rp1a1 Rp1b1 V_{1} s^{4} + C_{16} C_{3} C_{5} R_{10} R_{24} R_{6} R_{7} Rp1b1 V_{1} s^{3} + C_{16} C_{3} C_{5} R_{11} R_{24} R_{6} R_{7} Rp1b1 V_{1} s^{3} + C_{16} C_{3} C_{5} R_{24} R_{6} R_{7} Rp1a1 Rp1b1 V_{1} s^{3} + C_{16} C_{3} C_{7} C_{8} R_{10} R_{11} R_{12} R_{24} R_{6} R_{7} V_{1} s^{4} + C_{16} C_{3} C_{7} C_{8} R_{10} R_{11} R_{12} R_{24} R_{7} Rp1b1 V_{1} s^{4} + C_{16} C_{3} C_{7} C_{8} R_{11} R_{12} R_{24} R_{6} R_{7} Rp1a1 V_{1} s^{4} + C_{16} C_{3} C_{7} C_{8} R_{11} R_{12} R_{24} R_{7} Rp1a1 Rp1b1 V_{1} s^{4} + C_{16} C_{3} C_{7} R_{10} R_{11} R_{24} R_{6} R_{7} V_{1} s^{3} + C_{16} C_{3} C_{7} R_{10} R_{11} R_{24} R_{7} Rp1b1 V_{1} s^{3} + C_{16} C_{3} C_{7} R_{11} R_{24} R_{6} R_{7} Rp1a1 V_{1} s^{3} + C_{16} C_{3} C_{7} R_{11} R_{24} R_{7} Rp1a1 Rp1b1 V_{1} s^{3} + C_{16} C_{3} C_{8} R_{10} R_{12} R_{24} R_{6} R_{7} V_{1} s^{3} + C_{16} C_{3} C_{8} R_{10} R_{12} R_{24} R_{7} Rp1b1 V_{1} s^{3} + C_{16} C_{3} C_{8} R_{11} R_{12} R_{24} R_{6} R_{7} V_{1} s^{3} + C_{16} C_{3} C_{8} R_{11} R_{12} R_{24} R_{7} Rp1b1 V_{1} s^{3} + C_{16} C_{3} C_{8} R_{12} R_{24} R_{6} R_{7} Rp1a1 V_{1} s^{3} + C_{16} C_{3} C_{8} R_{12} R_{24} R_{7} Rp1a1 Rp1b1 V_{1} s^{3} + C_{16} C_{3} R_{10} R_{24} R_{6} R_{7} V_{1} s^{2} + C_{16} C_{3} R_{10} R_{24} R_{7} Rp1b1 V_{1} s^{2} + C_{16} C_{3} R_{11} R_{24} R_{6} R_{7} V_{1} s^{2} + C_{16} C_{3} R_{11} R_{24} R_{7} Rp1b1 V_{1} s^{2} + C_{16} C_{3} R_{24} R_{6} R_{7} Rp1a1 V_{1} s^{2} + C_{16} C_{3} R_{24} R_{7} Rp1a1 Rp1b1 V_{1} s^{2} + C_{16} C_{5} C_{7} C_{8} R_{10} R_{11} R_{12} R_{24} R_{6} R_{7} V_{1} s^{4} + C_{16} C_{5} C_{7} C_{8} R_{10} R_{11} R_{12} R_{24} R_{6} Rp1b1 V_{1} s^{4} + C_{16} C_{5} C_{7} C_{8} R_{11} R_{12} R_{24} R_{6} R_{7} Rp1a1 V_{1} s^{4} + C_{16} C_{5} C_{7} C_{8} R_{11} R_{12} R_{24} R_{6} Rp1a1 Rp1b1 V_{1} s^{4} + C_{16} C_{5} C_{7} R_{10} R_{11} R_{24} R_{6} R_{7} V_{1} s^{3} + C_{16} C_{5} C_{7} R_{10} R_{11} R_{24} R_{6} Rp1b1 V_{1} s^{3} + C_{16} C_{5} C_{7} R_{11} R_{24} R_{6} R_{7} Rp1a1 V_{1} s^{3} + C_{16} C_{5} C_{7} R_{11} R_{24} R_{6} Rp1a1 Rp1b1 V_{1} s^{3} + C_{16} C_{5} C_{8} R_{10} R_{12} R_{24} R_{6} R_{7} V_{1} s^{3} + C_{16} C_{5} C_{8} R_{10} R_{12} R_{24} R_{6} Rp1b1 V_{1} s^{3} + C_{16} C_{5} C_{8} R_{11} R_{12} R_{24} R_{6} R_{7} V_{1} s^{3} + C_{16} C_{5} C_{8} R_{11} R_{12} R_{24} R_{6} Rp1b1 V_{1} s^{3} + C_{16} C_{5} C_{8} R_{12} R_{24} R_{6} R_{7} Rp1a1 V_{1} s^{3} + C_{16} C_{5} C_{8} R_{12} R_{24} R_{6} Rp1a1 Rp1b1 V_{1} s^{3} + C_{16} C_{5} R_{10} R_{24} R_{6} R_{7} V_{1} s^{2} + C_{16} C_{5} R_{10} R_{24} R_{6} Rp1b1 V_{1} s^{2} + C_{16} C_{5} R_{11} R_{24} R_{6} R_{7} V_{1} s^{2} + C_{16} C_{5} R_{11} R_{24} R_{6} Rp1b1 V_{1} s^{2} + C_{16} C_{5} R_{24} R_{6} R_{7} Rp1a1 V_{1} s^{2} + C_{16} C_{5} R_{24} R_{6} Rp1a1 Rp1b1 V_{1} s^{2} + C_{16} C_{7} C_{8} R_{10} R_{11} R_{12} R_{24} R_{6} V_{1} s^{3} + C_{16} C_{7} C_{8} R_{10} R_{11} R_{12} R_{24} R_{7} V_{1} s^{3} + C_{16} C_{7} C_{8} R_{10} R_{11} R_{12} R_{24} Rp1b1 V_{1} s^{3} + C_{16} C_{7} C_{8} R_{11} R_{12} R_{24} R_{6} Rp1a1 V_{1} s^{3} + C_{16} C_{7} C_{8} R_{11} R_{12} R_{24} R_{7} Rp1a1 V_{1} s^{3} + C_{16} C_{7} C_{8} R_{11} R_{12} R_{24} Rp1a1 Rp1b1 V_{1} s^{3} + C_{16} C_{7} R_{10} R_{11} R_{24} R_{6} V_{1} s^{2} + C_{16} C_{7} R_{10} R_{11} R_{24} R_{7} V_{1} s^{2} + C_{16} C_{7} R_{10} R_{11} R_{24} Rp1b1 V_{1} s^{2} + C_{16} C_{7} R_{11} R_{24} R_{6} Rp1a1 V_{1} s^{2} + C_{16} C_{7} R_{11} R_{24} R_{7} Rp1a1 V_{1} s^{2} + C_{16} C_{7} R_{11} R_{24} Rp1a1 Rp1b1 V_{1} s^{2} + C_{16} C_{8} R_{10} R_{12} R_{24} R_{6} V_{1} s^{2} + C_{16} C_{8} R_{10} R_{12} R_{24} R_{7} V_{1} s^{2} + C_{16} C_{8} R_{10} R_{12} R_{24} Rp1b1 V_{1} s^{2} + C_{16} C_{8} R_{11} R_{12} R_{24} R_{6} V_{1} s^{2} + C_{16} C_{8} R_{11} R_{12} R_{24} R_{7} V_{1} s^{2} + C_{16} C_{8} R_{11} R_{12} R_{24} Rp1b1 V_{1} s^{2} + C_{16} C_{8} R_{12} R_{24} R_{6} Rp1a1 V_{1} s^{2} + C_{16} C_{8} R_{12} R_{24} R_{7} Rp1a1 V_{1} s^{2} + C_{16} C_{8} R_{12} R_{24} Rp1a1 Rp1b1 V_{1} s^{2} + C_{16} R_{10} R_{24} R_{6} V_{1} s + C_{16} R_{10} R_{24} R_{7} V_{1} s + C_{16} R_{10} R_{24} Rp1b1 V_{1} s + C_{16} R_{11} R_{24} R_{6} V_{1} s + C_{16} R_{11} R_{24} R_{7} V_{1} s + C_{16} R_{11} R_{24} Rp1b1 V_{1} s + C_{16} R_{24} R_{6} Rp1a1 V_{1} s + C_{16} R_{24} R_{7} Rp1a1 V_{1} s + C_{16} R_{24} Rp1a1 Rp1b1 V_{1} s + C_{3} C_{5} C_{7} C_{8} R_{10} R_{11} R_{12} R_{24} R_{6} Rp1b1 V_{1} s^{4} + C_{3} C_{5} C_{7} C_{8} R_{10} R_{11} R_{12} R_{6} R_{7} Rp1b1 V_{1} s^{4} + C_{3} C_{5} C_{7} C_{8} R_{11} R_{12} R_{24} R_{6} Rp1a1 Rp1b1 V_{1} s^{4} + C_{3} C_{5} C_{7} C_{8} R_{11} R_{12} R_{6} R_{7} Rp1a1 Rp1b1 V_{1} s^{4} + C_{3} C_{5} C_{7} R_{10} R_{11} R_{24} R_{6} Rp1b1 V_{1} s^{3} + C_{3} C_{5} C_{7} R_{10} R_{11} R_{6} R_{7} Rp1b1 V_{1} s^{3} + C_{3} C_{5} C_{7} R_{11} R_{24} R_{6} Rp1a1 Rp1b1 V_{1} s^{3} + C_{3} C_{5} C_{7} R_{11} R_{6} R_{7} Rp1a1 Rp1b1 V_{1} s^{3} + C_{3} C_{5} C_{8} R_{10} R_{12} R_{24} R_{6} Rp1b1 V_{1} s^{3} + C_{3} C_{5} C_{8} R_{10} R_{12} R_{6} R_{7} Rp1b1 V_{1} s^{3} + C_{3} C_{5} C_{8} R_{11} R_{12} R_{24} R_{6} Rp1b1 V_{1} s^{3} + C_{3} C_{5} C_{8} R_{11} R_{12} R_{6} R_{7} Rp1b1 V_{1} s^{3} + C_{3} C_{5} C_{8} R_{12} R_{24} R_{6} Rp1a1 Rp1b1 V_{1} s^{3} + C_{3} C_{5} C_{8} R_{12} R_{6} R_{7} Rp1a1 Rp1b1 V_{1} s^{3} + C_{3} C_{5} R_{10} R_{24} R_{6} Rp1b1 V_{1} s^{2} + C_{3} C_{5} R_{10} R_{6} R_{7} Rp1b1 V_{1} s^{2} + C_{3} C_{5} R_{11} R_{24} R_{6} Rp1b1 V_{1} s^{2} + C_{3} C_{5} R_{11} R_{6} R_{7} Rp1b1 V_{1} s^{2} + C_{3} C_{5} R_{24} R_{6} Rp1a1 Rp1b1 V_{1} s^{2} + C_{3} C_{5} R_{6} R_{7} Rp1a1 Rp1b1 V_{1} s^{2} + C_{3} C_{7} C_{8} R_{10} R_{11} R_{12} R_{24} R_{6} V_{1} s^{3} + C_{3} C_{7} C_{8} R_{10} R_{11} R_{12} R_{24} Rp1b1 V_{1} s^{3} + C_{3} C_{7} C_{8} R_{10} R_{11} R_{12} R_{6} R_{7} V_{1} s^{3} + C_{3} C_{7} C_{8} R_{10} R_{11} R_{12} R_{7} Rp1b1 V_{1} s^{3} + C_{3} C_{7} C_{8} R_{11} R_{12} R_{24} R_{6} Rp1a1 V_{1} s^{3} + C_{3} C_{7} C_{8} R_{11} R_{12} R_{24} Rp1a1 Rp1b1 V_{1} s^{3} + C_{3} C_{7} C_{8} R_{11} R_{12} R_{6} R_{7} Rp1a1 V_{1} s^{3} + C_{3} C_{7} C_{8} R_{11} R_{12} R_{7} Rp1a1 Rp1b1 V_{1} s^{3} + C_{3} C_{7} R_{10} R_{11} R_{24} R_{6} V_{1} s^{2} + C_{3} C_{7} R_{10} R_{11} R_{24} Rp1b1 V_{1} s^{2} + C_{3} C_{7} R_{10} R_{11} R_{6} R_{7} V_{1} s^{2} + C_{3} C_{7} R_{10} R_{11} R_{7} Rp1b1 V_{1} s^{2} + C_{3} C_{7} R_{11} R_{24} R_{6} Rp1a1 V_{1} s^{2} + C_{3} C_{7} R_{11} R_{24} Rp1a1 Rp1b1 V_{1} s^{2} + C_{3} C_{7} R_{11} R_{6} R_{7} Rp1a1 V_{1} s^{2} + C_{3} C_{7} R_{11} R_{7} Rp1a1 Rp1b1 V_{1} s^{2} + C_{3} C_{8} R_{10} R_{12} R_{24} R_{6} V_{1} s^{2} + C_{3} C_{8} R_{10} R_{12} R_{24} Rp1b1 V_{1} s^{2} + C_{3} C_{8} R_{10} R_{12} R_{6} R_{7} V_{1} s^{2} + C_{3} C_{8} R_{10} R_{12} R_{7} Rp1b1 V_{1} s^{2} + C_{3} C_{8} R_{11} R_{12} R_{24} R_{6} V_{1} s^{2} + C_{3} C_{8} R_{11} R_{12} R_{24} Rp1b1 V_{1} s^{2} + C_{3} C_{8} R_{11} R_{12} R_{6} R_{7} V_{1} s^{2} + C_{3} C_{8} R_{11} R_{12} R_{7} Rp1b1 V_{1} s^{2} + C_{3} C_{8} R_{12} R_{24} R_{6} Rp1a1 V_{1} s^{2} + C_{3} C_{8} R_{12} R_{24} Rp1a1 Rp1b1 V_{1} s^{2} + C_{3} C_{8} R_{12} R_{6} R_{7} Rp1a1 V_{1} s^{2} + C_{3} C_{8} R_{12} R_{7} Rp1a1 Rp1b1 V_{1} s^{2} + C_{3} R_{10} R_{24} R_{6} V_{1} s + C_{3} R_{10} R_{24} Rp1b1 V_{1} s + C_{3} R_{10} R_{6} R_{7} V_{1} s + C_{3} R_{10} R_{7} Rp1b1 V_{1} s + C_{3} R_{11} R_{24} R_{6} V_{1} s + C_{3} R_{11} R_{24} Rp1b1 V_{1} s + C_{3} R_{11} R_{6} R_{7} V_{1} s + C_{3} R_{11} R_{7} Rp1b1 V_{1} s + C_{3} R_{24} R_{6} Rp1a1 V_{1} s + C_{3} R_{24} Rp1a1 Rp1b1 V_{1} s + C_{3} R_{6} R_{7} Rp1a1 V_{1} s + C_{3} R_{7} Rp1a1 Rp1b1 V_{1} s + C_{5} C_{7} C_{8} R_{10} R_{11} R_{12} R_{24} R_{6} V_{1} s^{3} + C_{5} C_{7} C_{8} R_{10} R_{11} R_{12} R_{6} R_{7} V_{1} s^{3} + C_{5} C_{7} C_{8} R_{10} R_{11} R_{12} R_{6} Rp1b1 V_{1} s^{3} + C_{5} C_{7} C_{8} R_{11} R_{12} R_{24} R_{6} Rp1a1 V_{1} s^{3} + C_{5} C_{7} C_{8} R_{11} R_{12} R_{6} R_{7} Rp1a1 V_{1} s^{3} + C_{5} C_{7} C_{8} R_{11} R_{12} R_{6} Rp1a1 Rp1b1 V_{1} s^{3} + C_{5} C_{7} R_{10} R_{11} R_{24} R_{6} V_{1} s^{2} + C_{5} C_{7} R_{10} R_{11} R_{6} R_{7} V_{1} s^{2} + C_{5} C_{7} R_{10} R_{11} R_{6} Rp1b1 V_{1} s^{2} + C_{5} C_{7} R_{11} R_{24} R_{6} Rp1a1 V_{1} s^{2} + C_{5} C_{7} R_{11} R_{6} R_{7} Rp1a1 V_{1} s^{2} + C_{5} C_{7} R_{11} R_{6} Rp1a1 Rp1b1 V_{1} s^{2} + C_{5} C_{8} R_{10} R_{12} R_{24} R_{6} V_{1} s^{2} + C_{5} C_{8} R_{10} R_{12} R_{6} R_{7} V_{1} s^{2} + C_{5} C_{8} R_{10} R_{12} R_{6} Rp1b1 V_{1} s^{2} + C_{5} C_{8} R_{11} R_{12} R_{24} R_{6} V_{1} s^{2} + C_{5} C_{8} R_{11} R_{12} R_{6} R_{7} V_{1} s^{2} + C_{5} C_{8} R_{11} R_{12} R_{6} Rp1b1 V_{1} s^{2} + C_{5} C_{8} R_{12} R_{24} R_{6} Rp1a1 V_{1} s^{2} + C_{5} C_{8} R_{12} R_{6} R_{7} Rp1a1 V_{1} s^{2} + C_{5} C_{8} R_{12} R_{6} Rp1a1 Rp1b1 V_{1} s^{2} + C_{5} R_{10} R_{24} R_{6} V_{1} s + C_{5} R_{10} R_{6} R_{7} V_{1} s + C_{5} R_{10} R_{6} Rp1b1 V_{1} s + C_{5} R_{11} R_{24} R_{6} V_{1} s + C_{5} R_{11} R_{6} R_{7} V_{1} s + C_{5} R_{11} R_{6} Rp1b1 V_{1} s + C_{5} R_{24} R_{6} Rp1a1 V_{1} s + C_{5} R_{6} R_{7} Rp1a1 V_{1} s + C_{5} R_{6} Rp1a1 Rp1b1 V_{1} s + C_{7} C_{8} R_{10} R_{11} R_{12} R_{24} V_{1} s^{2} + C_{7} C_{8} R_{10} R_{11} R_{12} R_{6} V_{1} s^{2} + C_{7} C_{8} R_{10} R_{11} R_{12} R_{7} V_{1} s^{2} + C_{7} C_{8} R_{10} R_{11} R_{12} Rp1b1 V_{1} s^{2} + C_{7} C_{8} R_{11} R_{12} R_{24} Rp1a1 V_{1} s^{2} + C_{7} C_{8} R_{11} R_{12} R_{6} Rp1a1 V_{1} s^{2} + C_{7} C_{8} R_{11} R_{12} R_{7} Rp1a1 V_{1} s^{2} + C_{7} C_{8} R_{11} R_{12} Rp1a1 Rp1b1 V_{1} s^{2} + C_{7} R_{10} R_{11} R_{24} V_{1} s + C_{7} R_{10} R_{11} R_{6} V_{1} s + C_{7} R_{10} R_{11} R_{7} V_{1} s + C_{7} R_{10} R_{11} Rp1b1 V_{1} s + C_{7} R_{11} R_{24} Rp1a1 V_{1} s + C_{7} R_{11} R_{6} Rp1a1 V_{1} s + C_{7} R_{11} R_{7} Rp1a1 V_{1} s + C_{7} R_{11} Rp1a1 Rp1b1 V_{1} s + C_{8} R_{10} R_{12} R_{24} V_{1} s + C_{8} R_{10} R_{12} R_{6} V_{1} s + C_{8} R_{10} R_{12} R_{7} V_{1} s + C_{8} R_{10} R_{12} Rp1b1 V_{1} s + C_{8} R_{11} R_{12} R_{24} V_{1} s + C_{8} R_{11} R_{12} R_{6} V_{1} s + C_{8} R_{11} R_{12} R_{7} V_{1} s + C_{8} R_{11} R_{12} Rp1b1 V_{1} s + C_{8} R_{12} R_{24} Rp1a1 V_{1} s + C_{8} R_{12} R_{6} Rp1a1 V_{1} s + C_{8} R_{12} R_{7} Rp1a1 V_{1} s + C_{8} R_{12} Rp1a1 Rp1b1 V_{1} s + R_{10} R_{24} V_{1} + R_{10} R_{6} V_{1} + R_{10} R_{7} V_{1} + R_{10} Rp1b1 V_{1} + R_{11} R_{24} V_{1} + R_{11} R_{6} V_{1} + R_{11} R_{7} V_{1} + R_{11} Rp1b1 V_{1} + R_{24} Rp1a1 V_{1} + R_{6} Rp1a1 V_{1} + R_{7} Rp1a1 V_{1} + Rp1a1 Rp1b1 V_{1}\)
= solve(sym_denom,s) dr
len(dr)
\(\displaystyle 5\)
0].subs(element_values))/(2*np.pi) N(dr[
\(\displaystyle -967.036961306935\)
0].free_symbols dr[
\(\displaystyle \left\{C_{8}, R_{12}\right\}\)
1].subs(element_values))/(2*np.pi) N(dr[
\(\displaystyle -166.71953075605\)
1].free_symbols dr[
\(\displaystyle \left\{C_{7}, R_{10}, R_{11}, Rp1a1\right\}\)
2].subs(element_values))/(2*np.pi) N(dr[
\(\displaystyle -1198.55051381319 + 1.53728466142967 \cdot 10^{-13} i\)
2].free_symbols dr[
\(\displaystyle \left\{C_{16}, C_{3}, C_{5}, R_{24}, R_{6}, R_{7}, Rp1b1\right\}\)
3].subs(element_values))/(2*np.pi) N(dr[
\(\displaystyle -279.870301857556 - 6.80987679360742 \cdot 10^{-13} i\)
3].free_symbols dr[
\(\displaystyle \left\{C_{16}, C_{3}, C_{5}, R_{24}, R_{6}, R_{7}, Rp1b1\right\}\)
4].subs(element_values))/(2*np.pi) N(dr[
\(\displaystyle -12.0184161074726 + 5.27258661038143 \cdot 10^{-13} i\)
4].free_symbols dr[
\(\displaystyle \left\{C_{16}, C_{3}, C_{5}, R_{24}, R_{6}, R_{7}, Rp1b1\right\}\)
Klon-Centaur_sum_path1b_v1
Fix P1 ref designators, seems like Rp1b1 and Rp1a1 parts A and B are mixed
= '''
sum_path1b_v1_net_list * Klon-Centaur_sum_path1b_v1.asc
V1 1 0 1
Rp1b1 0 1 50e3
Rp1a1 3 0 50e3
R10 4 3 2e3
R11 5 4 15e3
C7 5 4 82e-9
C8 2 5 390e-12
R12 2 5 422e3
O1b 5 1 2
'''
= SymMNA.smna(sum_path1b_v1_net_list) report, network_df, i_unk_df, A, X, Z
Build the network equations
# Put matrices into SymPy
= Matrix(X)
X = Matrix(Z)
Z
= Eq(A*X,Z)
NE_sym
# display the equations
= ''
temp for i in range(shape(NE_sym.lhs)[0]):
+= '${:s} = {:s}$<br>'.format(latex(NE_sym.rhs[i]),latex(NE_sym.lhs[i]))
temp Markdown(temp)
\(0 = I_{V1} + \frac{v_{1}}{Rp1b1}\)
\(0 = I_{O1b} + v_{2} \left(C_{8} s + \frac{1}{R_{12}}\right) + v_{5} \left(- C_{8} s - \frac{1}{R_{12}}\right)\)
\(0 = v_{3} \cdot \left(\frac{1}{Rp1a1} + \frac{1}{R_{10}}\right) - \frac{v_{4}}{R_{10}}\)
\(0 = v_{4} \left(C_{7} s + \frac{1}{R_{11}} + \frac{1}{R_{10}}\right) + v_{5} \left(- C_{7} s - \frac{1}{R_{11}}\right) - \frac{v_{3}}{R_{10}}\)
\(0 = v_{2} \left(- C_{8} s - \frac{1}{R_{12}}\right) + v_{4} \left(- C_{7} s - \frac{1}{R_{11}}\right) + v_{5} \left(C_{7} s + C_{8} s + \frac{1}{R_{12}} + \frac{1}{R_{11}}\right)\)
\(V_{1} = v_{1}\)
\(0 = - v_{1} + v_{5}\)
Turn the free symbols into SymPy variables.
str(NE_sym.free_symbols).replace('{','').replace('}','')) var(
\(\displaystyle \left( Rp1b1, \ v_{2}, \ v_{5}, \ v_{3}, \ I_{V1}, \ R_{12}, \ v_{1}, \ s, \ v_{4}, \ R_{11}, \ V_{1}, \ R_{10}, \ C_{7}, \ C_{8}, \ Rp1a1, \ I_{O1b}\right)\)
= SymMNA.get_part_values(network_df) element_values
The network equations can be solved symbolically.
= solve(NE_sym,X) U_sym
Display the symbolic solution
= ''
temp for i in U_sym.keys():
+= '${:s} = {:s}$<br>'.format(latex(i),latex(U_sym[i]))
temp
Markdown(temp)
\(v_{1} = V_{1}\)
\(v_{2} = \frac{C_{7} C_{8} R_{10} R_{11} R_{12} V_{1} s^{2} + C_{7} C_{8} R_{11} R_{12} Rp1a1 V_{1} s^{2} + C_{7} R_{10} R_{11} V_{1} s + C_{7} R_{11} R_{12} V_{1} s + C_{7} R_{11} Rp1a1 V_{1} s + C_{8} R_{10} R_{12} V_{1} s + C_{8} R_{11} R_{12} V_{1} s + C_{8} R_{12} Rp1a1 V_{1} s + R_{10} V_{1} + R_{11} V_{1} + R_{12} V_{1} + Rp1a1 V_{1}}{C_{7} C_{8} R_{10} R_{11} R_{12} s^{2} + C_{7} C_{8} R_{11} R_{12} Rp1a1 s^{2} + C_{7} R_{10} R_{11} s + C_{7} R_{11} Rp1a1 s + C_{8} R_{10} R_{12} s + C_{8} R_{11} R_{12} s + C_{8} R_{12} Rp1a1 s + R_{10} + R_{11} + Rp1a1}\)
\(v_{3} = \frac{C_{7} R_{11} Rp1a1 V_{1} s + Rp1a1 V_{1}}{C_{7} R_{10} R_{11} s + C_{7} R_{11} Rp1a1 s + R_{10} + R_{11} + Rp1a1}\)
\(v_{4} = \frac{C_{7} R_{10} R_{11} V_{1} s + C_{7} R_{11} Rp1a1 V_{1} s + R_{10} V_{1} + Rp1a1 V_{1}}{C_{7} R_{10} R_{11} s + C_{7} R_{11} Rp1a1 s + R_{10} + R_{11} + Rp1a1}\)
\(v_{5} = V_{1}\)
\(I_{V1} = - \frac{V_{1}}{Rp1b1}\)
\(I_{O1b} = \frac{- C_{7} R_{11} V_{1} s - V_{1}}{C_{7} R_{10} R_{11} s + C_{7} R_{11} Rp1a1 s + R_{10} + R_{11} + Rp1a1}\)
Explanation of operation by looking at the pole and zero locations.
= cancel(U_sym[v2]/U_sym[v1])
H_sym H_sym
\(\displaystyle \frac{C_{7} C_{8} R_{10} R_{11} R_{12} s^{2} + C_{7} C_{8} R_{11} R_{12} Rp1a1 s^{2} + C_{7} R_{10} R_{11} s + C_{7} R_{11} R_{12} s + C_{7} R_{11} Rp1a1 s + C_{8} R_{10} R_{12} s + C_{8} R_{11} R_{12} s + C_{8} R_{12} Rp1a1 s + R_{10} + R_{11} + R_{12} + Rp1a1}{C_{7} C_{8} R_{10} R_{11} R_{12} s^{2} + C_{7} C_{8} R_{11} R_{12} Rp1a1 s^{2} + C_{7} R_{10} R_{11} s + C_{7} R_{11} Rp1a1 s + C_{8} R_{10} R_{12} s + C_{8} R_{11} R_{12} s + C_{8} R_{12} Rp1a1 s + R_{10} + R_{11} + Rp1a1}\)
find the DC gain
0}) H_sym.subs({s:
\(\displaystyle \frac{R_{10} + R_{11} + R_{12} + Rp1a1}{R_{10} + R_{11} + Rp1a1}\)
str(H_sym.subs({s:0}))
'(R10 + R11 + R12 + Rp1a1)/(R10 + R11 + Rp1a1)'
0}) H_sym.subs(element_values).subs({s:
\(\displaystyle 7.29850746268657\)
High freq gain
100e3*2*np.pi}) H_sym.subs(element_values).subs({s:
\(\displaystyle 1.07769815524754\)
= fraction(H_sym) #returns numerator and denominator sym_num, sym_denom
sym_num.subs(element_values)
\(\displaystyle 0.0105265368 s^{2} + 594.04686 s + 489000.0\)
sym_num
\(\displaystyle C_{7} C_{8} R_{10} R_{11} R_{12} s^{2} + C_{7} C_{8} R_{11} R_{12} Rp1a1 s^{2} + C_{7} R_{10} R_{11} s + C_{7} R_{11} R_{12} s + C_{7} R_{11} Rp1a1 s + C_{8} R_{10} R_{12} s + C_{8} R_{11} R_{12} s + C_{8} R_{12} Rp1a1 s + R_{10} + R_{11} + R_{12} + Rp1a1\)
= solve(sym_num,s) nr
len(nr)
\(\displaystyle 2\)
0].subs(element_values))/(2*np.pi) N(nr[
\(\displaystyle -8848.65333990331\)
0].free_symbols nr[
\(\displaystyle \left\{C_{7}, C_{8}, R_{10}, R_{11}, R_{12}, Rp1a1\right\}\)
1].subs(element_values))/(2*np.pi) N(nr[
\(\displaystyle -132.980030458265\)
1].free_symbols nr[
\(\displaystyle \left\{C_{7}, C_{8}, R_{10}, R_{11}, R_{12}, Rp1a1\right\}\)
Try plotting the location of the zeros as a function of P1a
= 100e3
p1_value = []
num_roots for i in np.linspace(1,99,20)/100:
= p1_value - i*p1_value
element_values[Rp1a1] = i*p1_value
element_values[Rp1b1]
num_roots.append(solve(sym_num.subs(element_values),s))#print(np.array(num_roots)/(2*np.pi))
= zip(*num_roots)
r1, r2 1,99,len(r1)),np.array(r1)/(2*np.pi),'x-')
plt.plot(np.linspace(1,99,len(r2)),np.array(r2)/(2*np.pi),'.-')
plt.plot(np.linspace( plt.show()
sym_denom.subs(element_values)
\(\displaystyle 0.0006073002 s^{2} + 6.65244 s + 18000.0\)
sym_denom
\(\displaystyle C_{7} C_{8} R_{10} R_{11} R_{12} s^{2} + C_{7} C_{8} R_{11} R_{12} Rp1a1 s^{2} + C_{7} R_{10} R_{11} s + C_{7} R_{11} Rp1a1 s + C_{8} R_{10} R_{12} s + C_{8} R_{11} R_{12} s + C_{8} R_{12} Rp1a1 s + R_{10} + R_{11} + Rp1a1\)
= solve(sym_denom,s) dr
len(dr)
\(\displaystyle 2\)
0].subs(element_values))/(2*np.pi) N(dr[
\(\displaystyle -967.036961306935\)
0].free_symbols dr[
\(\displaystyle \left\{C_{8}, R_{12}\right\}\)
1].subs(element_values))/(2*np.pi) N(dr[
\(\displaystyle -776.365576058026\)
1].free_symbols dr[
\(\displaystyle \left\{C_{7}, R_{10}, R_{11}, Rp1a1\right\}\)
Try plotting the location of the poles as a function of P1a
= 100e3
p1_value = []
denom_roots for i in np.linspace(1,99,20)/100:
= p1_value - i*p1_value
element_values[Rp1a1] = i*p1_value
element_values[Rp1b1]
denom_roots.append(solve(sym_denom.subs(element_values),s))#print(np.array(num_roots)/(2*np.pi))
= zip(*denom_roots)
r1, r2 1,99,len(r1)),np.array(r1)/(2*np.pi),'x-')
plt.plot(np.linspace(1,99,len(r2)),np.array(r2)/(2*np.pi),'.-')
plt.plot(np.linspace( plt.show()
Construct a dictionary of element values.
# display the component values
for k,v in element_values.items():
print('{:s} = {:s}'.format(str(k), str(v)))
V1 = 1.0
Rp1b1 = 99000.0
Rp1a1 = 1000.0
R10 = 2000.0
R11 = 15000.0
C7 = 8.2e-08
C8 = 3.9e-10
R12 = 422000.0
O1b = nan
Gain setting is a percent of full scale
= np.logspace(1, 5, 2000, endpoint=False)*2*np.pi
x_axis = ['tab:blue','tab:red','tab:green','tab:orange','k']
color_list = np.array([1,25,50,75,99])/100
gain_setting = 100e3
p1_value
= []
tf_num_coef_list = []
tf_denom_coef_list
#clean_path1_mag = np.zeros((len(gain_setting),len(x_axis)))
#color_list = ['tab:blue','tab:red','tab:green','tab:orange','k']
= plt.subplots()
fig, ax1 'magnitude, dB')
ax1.set_ylabel('frequency, Hz')
ax1.set_xlabel(
# instantiate a second y-axes that shares the same x-axis
= ax1.twinx()
ax2 = 'k'
color
'phase, deg',color=color)
ax2.set_ylabel(='y', labelcolor=color)
ax2.tick_params(axis
for i in range(len(gain_setting)):
= p1_value - gain_setting[i]*p1_value
element_values[Rp1a1] = gain_setting[i]*p1_value
element_values[Rp1b1]
#element_values[Rp1a2] = p1_value - gain_setting[i]*p1_value
#element_values[Rp1b2] = gain_setting[i]*p1_value
= NE_sym.subs(element_values)
NE = solve(NE,X)
U = U[v2]/U[v1]
H = fraction(H) #returns numerator and denominator
num, denom
# convert symbolic to numpy polynomial
= np.array(Poly(num, s).all_coeffs(), dtype=float)
a = np.array(Poly(denom, s).all_coeffs(), dtype=float)
b
tf_num_coef_list.append(a)
tf_denom_coef_list.append(b)
#x = np.logspace(1, 5, 2000, endpoint=False)*2*np.pi
= signal.bode((a, b), w=x_axis) # returns: rad/s, mag in dB, phase in deg
w, mag, phase #clean_path1_mag[i] = mag
# plot the results.
/(2*np.pi), mag,'-',color=color_list[i],label='mag: {:.0f}%'.format(gain_setting[i]*100)) # magnitude plot
ax1.semilogx(w/(2*np.pi), phase,':',color=color_list[i],label='phase: {:.0f}%'.format(gain_setting[i]*100)) # phase plot
ax2.semilogx(w
# highlight the guitar audio band, 80 to 8kHz
80, 8e3, color='y', alpha=0.3)
plt.axvspan(
='lower left')
ax1.legend(loc='lower right')
ax2.legend(loc
ax1.grid()'Magnitude and phase response')
plt.title( plt.show()
Klon-Centaur_sum_path2a_v1
Try for a symbolic solution again.
Think about P1b2 and P1a2 as just a 100k resistor from node 3 to ground. The center tap supplies signal to next branch. Analyze v3/v1.
= '''
sum_path2a_v1_net_list * Klon-Centaur_sum_path2a_v1.asc
R5 1 2 5.1e3
R8 2 0 1.5e3
C4 1 2 68e-9
C6 2 3 390e-9
R9 3 0 1e3
Rp1b2 2 4 50e3
Rp1a2 4 0 50e3
V1 1 0 1
'''
= SymMNA.smna(sum_path2a_v1_net_list) report, network_df, i_unk_df, A, X, Z
Build the network equations
# Put matrices into SymPy
= Matrix(X)
X = Matrix(Z)
Z
= Eq(A*X,Z)
NE_sym
# display the equations
= ''
temp for i in range(shape(NE_sym.lhs)[0]):
+= '${:s} = {:s}$<br>'.format(latex(NE_sym.rhs[i]),latex(NE_sym.lhs[i]))
temp Markdown(temp)
\(0 = I_{V1} + v_{1} \left(C_{4} s + \frac{1}{R_{5}}\right) + v_{2} \left(- C_{4} s - \frac{1}{R_{5}}\right)\)
\(0 = - C_{6} s v_{3} + v_{1} \left(- C_{4} s - \frac{1}{R_{5}}\right) + v_{2} \left(C_{4} s + C_{6} s + \frac{1}{Rp1b2} + \frac{1}{R_{8}} + \frac{1}{R_{5}}\right) - \frac{v_{4}}{Rp1b2}\)
\(0 = - C_{6} s v_{2} + v_{3} \left(C_{6} s + \frac{1}{R_{9}}\right)\)
\(0 = v_{4} \cdot \left(\frac{1}{Rp1b2} + \frac{1}{Rp1a2}\right) - \frac{v_{2}}{Rp1b2}\)
\(V_{1} = v_{1}\)
Turn the free symbols into SymPy variables.
str(NE_sym.free_symbols).replace('{','').replace('}','')) var(
\(\displaystyle \left( v_{3}, \ v_{2}, \ I_{V1}, \ C_{4}, \ v_{1}, \ R_{9}, \ s, \ v_{4}, \ Rp1a2, \ V_{1}, \ R_{8}, \ C_{6}, \ Rp1b2, \ R_{5}\right)\)
= SymMNA.get_part_values(network_df) element_values
The network equations can be solved symbolically.
= solve(NE_sym,X) U_sym
Display the symbolic solution
= ''
temp for i in U_sym.keys():
+= '${:s} = {:s}$<br>'.format(latex(i),latex(U_sym[i]))
temp
Markdown(temp)
\(v_{1} = V_{1}\)
\(v_{2} = \frac{C_{4} C_{6} R_{5} R_{8} R_{9} Rp1a2 V_{1} s^{2} + C_{4} C_{6} R_{5} R_{8} R_{9} Rp1b2 V_{1} s^{2} + C_{4} R_{5} R_{8} Rp1a2 V_{1} s + C_{4} R_{5} R_{8} Rp1b2 V_{1} s + C_{6} R_{8} R_{9} Rp1a2 V_{1} s + C_{6} R_{8} R_{9} Rp1b2 V_{1} s + R_{8} Rp1a2 V_{1} + R_{8} Rp1b2 V_{1}}{C_{4} C_{6} R_{5} R_{8} R_{9} Rp1a2 s^{2} + C_{4} C_{6} R_{5} R_{8} R_{9} Rp1b2 s^{2} + C_{4} R_{5} R_{8} Rp1a2 s + C_{4} R_{5} R_{8} Rp1b2 s + C_{6} R_{5} R_{8} R_{9} s + C_{6} R_{5} R_{8} Rp1a2 s + C_{6} R_{5} R_{8} Rp1b2 s + C_{6} R_{5} R_{9} Rp1a2 s + C_{6} R_{5} R_{9} Rp1b2 s + C_{6} R_{8} R_{9} Rp1a2 s + C_{6} R_{8} R_{9} Rp1b2 s + R_{5} R_{8} + R_{5} Rp1a2 + R_{5} Rp1b2 + R_{8} Rp1a2 + R_{8} Rp1b2}\)
\(v_{3} = \frac{C_{4} C_{6} R_{5} R_{8} R_{9} Rp1a2 V_{1} s^{2} + C_{4} C_{6} R_{5} R_{8} R_{9} Rp1b2 V_{1} s^{2} + C_{6} R_{8} R_{9} Rp1a2 V_{1} s + C_{6} R_{8} R_{9} Rp1b2 V_{1} s}{C_{4} C_{6} R_{5} R_{8} R_{9} Rp1a2 s^{2} + C_{4} C_{6} R_{5} R_{8} R_{9} Rp1b2 s^{2} + C_{4} R_{5} R_{8} Rp1a2 s + C_{4} R_{5} R_{8} Rp1b2 s + C_{6} R_{5} R_{8} R_{9} s + C_{6} R_{5} R_{8} Rp1a2 s + C_{6} R_{5} R_{8} Rp1b2 s + C_{6} R_{5} R_{9} Rp1a2 s + C_{6} R_{5} R_{9} Rp1b2 s + C_{6} R_{8} R_{9} Rp1a2 s + C_{6} R_{8} R_{9} Rp1b2 s + R_{5} R_{8} + R_{5} Rp1a2 + R_{5} Rp1b2 + R_{8} Rp1a2 + R_{8} Rp1b2}\)
\(v_{4} = \frac{C_{4} C_{6} R_{5} R_{8} R_{9} Rp1a2 V_{1} s^{2} + C_{4} R_{5} R_{8} Rp1a2 V_{1} s + C_{6} R_{8} R_{9} Rp1a2 V_{1} s + R_{8} Rp1a2 V_{1}}{C_{4} C_{6} R_{5} R_{8} R_{9} Rp1a2 s^{2} + C_{4} C_{6} R_{5} R_{8} R_{9} Rp1b2 s^{2} + C_{4} R_{5} R_{8} Rp1a2 s + C_{4} R_{5} R_{8} Rp1b2 s + C_{6} R_{5} R_{8} R_{9} s + C_{6} R_{5} R_{8} Rp1a2 s + C_{6} R_{5} R_{8} Rp1b2 s + C_{6} R_{5} R_{9} Rp1a2 s + C_{6} R_{5} R_{9} Rp1b2 s + C_{6} R_{8} R_{9} Rp1a2 s + C_{6} R_{8} R_{9} Rp1b2 s + R_{5} R_{8} + R_{5} Rp1a2 + R_{5} Rp1b2 + R_{8} Rp1a2 + R_{8} Rp1b2}\)
\(I_{V1} = \frac{- C_{4} C_{6} R_{5} R_{8} R_{9} V_{1} s^{2} - C_{4} C_{6} R_{5} R_{8} Rp1a2 V_{1} s^{2} - C_{4} C_{6} R_{5} R_{8} Rp1b2 V_{1} s^{2} - C_{4} C_{6} R_{5} R_{9} Rp1a2 V_{1} s^{2} - C_{4} C_{6} R_{5} R_{9} Rp1b2 V_{1} s^{2} - C_{4} R_{5} R_{8} V_{1} s - C_{4} R_{5} Rp1a2 V_{1} s - C_{4} R_{5} Rp1b2 V_{1} s - C_{6} R_{8} R_{9} V_{1} s - C_{6} R_{8} Rp1a2 V_{1} s - C_{6} R_{8} Rp1b2 V_{1} s - C_{6} R_{9} Rp1a2 V_{1} s - C_{6} R_{9} Rp1b2 V_{1} s - R_{8} V_{1} - Rp1a2 V_{1} - Rp1b2 V_{1}}{C_{4} C_{6} R_{5} R_{8} R_{9} Rp1a2 s^{2} + C_{4} C_{6} R_{5} R_{8} R_{9} Rp1b2 s^{2} + C_{4} R_{5} R_{8} Rp1a2 s + C_{4} R_{5} R_{8} Rp1b2 s + C_{6} R_{5} R_{8} R_{9} s + C_{6} R_{5} R_{8} Rp1a2 s + C_{6} R_{5} R_{8} Rp1b2 s + C_{6} R_{5} R_{9} Rp1a2 s + C_{6} R_{5} R_{9} Rp1b2 s + C_{6} R_{8} R_{9} Rp1a2 s + C_{6} R_{8} R_{9} Rp1b2 s + R_{5} R_{8} + R_{5} Rp1a2 + R_{5} Rp1b2 + R_{8} Rp1a2 + R_{8} Rp1b2}\)
Explanation of operation by looking at the pole and zero locations.
= cancel(U_sym[v2]/U_sym[v1])
H_sym H_sym
\(\displaystyle \frac{C_{4} C_{6} R_{5} R_{8} R_{9} Rp1a2 s^{2} + C_{4} C_{6} R_{5} R_{8} R_{9} Rp1b2 s^{2} + C_{4} R_{5} R_{8} Rp1a2 s + C_{4} R_{5} R_{8} Rp1b2 s + C_{6} R_{8} R_{9} Rp1a2 s + C_{6} R_{8} R_{9} Rp1b2 s + R_{8} Rp1a2 + R_{8} Rp1b2}{C_{4} C_{6} R_{5} R_{8} R_{9} Rp1a2 s^{2} + C_{4} C_{6} R_{5} R_{8} R_{9} Rp1b2 s^{2} + C_{4} R_{5} R_{8} Rp1a2 s + C_{4} R_{5} R_{8} Rp1b2 s + C_{6} R_{5} R_{8} R_{9} s + C_{6} R_{5} R_{8} Rp1a2 s + C_{6} R_{5} R_{8} Rp1b2 s + C_{6} R_{5} R_{9} Rp1a2 s + C_{6} R_{5} R_{9} Rp1b2 s + C_{6} R_{8} R_{9} Rp1a2 s + C_{6} R_{8} R_{9} Rp1b2 s + R_{5} R_{8} + R_{5} Rp1a2 + R_{5} Rp1b2 + R_{8} Rp1a2 + R_{8} Rp1b2}\)
= fraction(H_sym) #returns numerator and denominator sym_num, sym_denom
sym_num.subs(element_values)
\(\displaystyle 20.2878 s^{2} + 110520.0 s + 150000000.0\)
sym_num
\(\displaystyle C_{4} C_{6} R_{5} R_{8} R_{9} Rp1a2 s^{2} + C_{4} C_{6} R_{5} R_{8} R_{9} Rp1b2 s^{2} + C_{4} R_{5} R_{8} Rp1a2 s + C_{4} R_{5} R_{8} Rp1b2 s + C_{6} R_{8} R_{9} Rp1a2 s + C_{6} R_{8} R_{9} Rp1b2 s + R_{8} Rp1a2 + R_{8} Rp1b2\)
= solve(sym_num,s) nr
len(nr)
\(\displaystyle 2\)
0].subs(element_values))/(2*np.pi) N(nr[
\(\displaystyle -458.924288038914\)
0].free_symbols nr[
\(\displaystyle \left\{C_{4}, R_{5}\right\}\)
1].subs(element_values))/(2*np.pi) N(nr[
\(\displaystyle -408.089597671527\)
1].free_symbols nr[
\(\displaystyle \left\{C_{6}, R_{9}\right\}\)
Try plotting the location of the zeros as a function of P1a
sym_denom.subs(element_values)
\(\displaystyle 20.2878 s^{2} + 610753.5 s + 667650000.0\)
sym_denom
\(\displaystyle C_{4} C_{6} R_{5} R_{8} R_{9} Rp1a2 s^{2} + C_{4} C_{6} R_{5} R_{8} R_{9} Rp1b2 s^{2} + C_{4} R_{5} R_{8} Rp1a2 s + C_{4} R_{5} R_{8} Rp1b2 s + C_{6} R_{5} R_{8} R_{9} s + C_{6} R_{5} R_{8} Rp1a2 s + C_{6} R_{5} R_{8} Rp1b2 s + C_{6} R_{5} R_{9} Rp1a2 s + C_{6} R_{5} R_{9} Rp1b2 s + C_{6} R_{8} R_{9} Rp1a2 s + C_{6} R_{8} R_{9} Rp1b2 s + R_{5} R_{8} + R_{5} Rp1a2 + R_{5} Rp1b2 + R_{8} Rp1a2 + R_{8} Rp1b2\)
= solve(sym_denom,s) dr
len(dr)
\(\displaystyle 2\)
0].subs(element_values))/(2*np.pi) N(dr[
\(\displaystyle -4610.4711311767\)
0].free_symbols dr[
\(\displaystyle \left\{C_{4}, C_{6}, R_{5}, R_{8}, R_{9}, Rp1a2, Rp1b2\right\}\)
1].subs(element_values))/(2*np.pi) N(dr[
\(\displaystyle -180.804341554495\)
1].free_symbols dr[
\(\displaystyle \left\{C_{4}, C_{6}, R_{5}, R_{8}, R_{9}, Rp1a2, Rp1b2\right\}\)
Try plotting the location of the poles as a function of P1a
= 100e3
p1_value = []
denom_roots for i in np.linspace(1,99,20)/100:
= p1_value - i*p1_value
element_values[Rp1a2] = i*p1_value
element_values[Rp1b2]
denom_roots.append(solve(sym_denom.subs(element_values),s))#print(np.array(num_roots)/(2*np.pi))
= zip(*denom_roots)
r1, r2 1,99,len(r1)),np.array(r1)/(2*np.pi),'x-')
plt.plot(np.linspace(1,99,len(r2)),np.array(r2)/(2*np.pi),'.-')
plt.plot(np.linspace( plt.show()
Construct a dictionary of element values.
# display the component values
for k,v in element_values.items():
print('{:s} = {:s}'.format(str(k), str(v)))
V1 = 1.0
R5 = 5100.0
R8 = 1500.0
C4 = 6.8e-08
C6 = 3.9e-07
R9 = 1000.0
Rp1b2 = 99000.0
Rp1a2 = 1000.0
= np.logspace(1, 5, 2000, endpoint=False)*2*np.pi
x_axis = ['tab:blue','tab:red','tab:green','tab:orange','k']
color_list = np.array([1,25,50,75,99])/100
gain_setting = 100e3
p1_value
= []
tf_num_coef_list = []
tf_denom_coef_list
#clean_path1_mag = np.zeros((len(gain_setting),len(x_axis)))
#color_list = ['tab:blue','tab:red','tab:green','tab:orange','k']
= plt.subplots()
fig, ax1 'magnitude, dB')
ax1.set_ylabel('frequency, Hz')
ax1.set_xlabel(
# instantiate a second y-axes that shares the same x-axis
= ax1.twinx()
ax2 = 'k'
color
'phase, deg',color=color)
ax2.set_ylabel(='y', labelcolor=color)
ax2.tick_params(axis
for i in range(len(gain_setting)):
= p1_value - gain_setting[i]*p1_value
element_values[Rp1a2] = gain_setting[i]*p1_value
element_values[Rp1b2]
#element_values[Rp1a2] = p1_value - gain_setting[i]*p1_value
#element_values[Rp1b2] = gain_setting[i]*p1_value
= NE_sym.subs(element_values)
NE = solve(NE,X)
U = U[v2]/U[v1]
H = fraction(H) #returns numerator and denominator
num, denom
# convert symbolic to numpy polynomial
= np.array(Poly(num, s).all_coeffs(), dtype=float)
a = np.array(Poly(denom, s).all_coeffs(), dtype=float)
b
tf_num_coef_list.append(a)
tf_denom_coef_list.append(b)
#x = np.logspace(1, 5, 2000, endpoint=False)*2*np.pi
= signal.bode((a, b), w=x_axis) # returns: rad/s, mag in dB, phase in deg
w, mag, phase #clean_path1_mag[i] = mag
# plot the results.
/(2*np.pi), mag,'-',color=color_list[i],label='mag: {:.0f}%'.format(gain_setting[i]*100)) # magnitude plot
ax1.semilogx(w/(2*np.pi), phase,':',color=color_list[i],label='phase: {:.0f}%'.format(gain_setting[i]*100)) # phase plot
ax2.semilogx(w
# highlight the guitar audio band, 80 to 8kHz
80, 8e3, color='y', alpha=0.3)
plt.axvspan(
='lower left')
ax1.legend(loc='lower right')
ax2.legend(loc
ax1.grid()'Magnitude and phase response')
plt.title( plt.show()
= '''
sum_path2b_v1_net_list * Klon-Centaur_sum_path2b_v1.asc
C11 5 3 2.2e-9
R15 3 7 22e3
R17 6 7 27e3
R18 4 7 12e3
C12 6 4 27e-9
R16 6 5 47e3
V1 1 0 1
R1 2 6 392e3
C1 2 6 820e-12
O1 6 0 2
Rp1b2 1 7 50e3
Rp1a2 7 0 50e3
'''
= SymMNA.smna(sum_path2b_v1_net_list) report, network_df, i_unk_df, A, X, Z
Build the network equations
# Put matrices into SymPy
= Matrix(X)
X = Matrix(Z)
Z
= Eq(A*X,Z)
NE_sym
# display the equations
= ''
temp for i in range(shape(NE_sym.lhs)[0]):
+= '${:s} = {:s}$<br>'.format(latex(NE_sym.rhs[i]),latex(NE_sym.lhs[i]))
temp Markdown(temp)
\(0 = I_{V1} + \frac{v_{1}}{Rp1b2} - \frac{v_{7}}{Rp1b2}\)
\(0 = I_{O1} + v_{2} \left(C_{1} s + \frac{1}{R_{1}}\right) + v_{6} \left(- C_{1} s - \frac{1}{R_{1}}\right)\)
\(0 = - C_{11} s v_{5} + v_{3} \left(C_{11} s + \frac{1}{R_{15}}\right) - \frac{v_{7}}{R_{15}}\)
\(0 = - C_{12} s v_{6} + v_{4} \left(C_{12} s + \frac{1}{R_{18}}\right) - \frac{v_{7}}{R_{18}}\)
\(0 = - C_{11} s v_{3} + v_{5} \left(C_{11} s + \frac{1}{R_{16}}\right) - \frac{v_{6}}{R_{16}}\)
\(0 = - C_{12} s v_{4} + v_{2} \left(- C_{1} s - \frac{1}{R_{1}}\right) + v_{6} \left(C_{1} s + C_{12} s + \frac{1}{R_{17}} + \frac{1}{R_{16}} + \frac{1}{R_{1}}\right) - \frac{v_{7}}{R_{17}} - \frac{v_{5}}{R_{16}}\)
\(0 = v_{7} \cdot \left(\frac{1}{Rp1b2} + \frac{1}{Rp1a2} + \frac{1}{R_{18}} + \frac{1}{R_{17}} + \frac{1}{R_{15}}\right) - \frac{v_{1}}{Rp1b2} - \frac{v_{4}}{R_{18}} - \frac{v_{6}}{R_{17}} - \frac{v_{3}}{R_{15}}\)
\(V_{1} = v_{1}\)
\(0 = v_{6}\)
Turn the free symbols into SymPy variables.
str(NE_sym.free_symbols).replace('{','').replace('}','')) var(
\(\displaystyle \left( v_{2}, \ v_{5}, \ I_{V1}, \ R_{16}, \ s, \ C_{1}, \ Rp1a2, \ V_{1}, \ Rp1b2, \ R_{18}, \ v_{7}, \ v_{3}, \ C_{12}, \ v_{1}, \ v_{4}, \ I_{O1}, \ R_{1}, \ v_{6}, \ R_{15}, \ C_{11}, \ R_{17}\right)\)
= SymMNA.get_part_values(network_df) element_values
The network equations can be solved symbolically.
= solve(NE_sym,X) U_sym
Display the symbolic solution
= ''
temp for i in U_sym.keys():
+= '${:s} = {:s}$<br>'.format(latex(i),latex(U_sym[i]))
temp
Markdown(temp)
\(v_{1} = V_{1}\)
\(v_{2} = \frac{- C_{11} C_{12} R_{1} R_{15} R_{17} Rp1a2 V_{1} s^{2} - C_{11} C_{12} R_{1} R_{15} R_{18} Rp1a2 V_{1} s^{2} - C_{11} C_{12} R_{1} R_{16} R_{17} Rp1a2 V_{1} s^{2} - C_{11} C_{12} R_{1} R_{16} R_{18} Rp1a2 V_{1} s^{2} - C_{11} C_{12} R_{1} R_{17} R_{18} Rp1a2 V_{1} s^{2} - C_{11} R_{1} R_{15} Rp1a2 V_{1} s - C_{11} R_{1} R_{16} Rp1a2 V_{1} s - C_{11} R_{1} R_{17} Rp1a2 V_{1} s - C_{12} R_{1} R_{17} Rp1a2 V_{1} s - C_{12} R_{1} R_{18} Rp1a2 V_{1} s - R_{1} Rp1a2 V_{1}}{C_{1} C_{11} C_{12} R_{1} R_{15} R_{17} R_{18} Rp1a2 s^{3} + C_{1} C_{11} C_{12} R_{1} R_{15} R_{17} R_{18} Rp1b2 s^{3} + C_{1} C_{11} C_{12} R_{1} R_{15} R_{17} Rp1a2 Rp1b2 s^{3} + C_{1} C_{11} C_{12} R_{1} R_{15} R_{18} Rp1a2 Rp1b2 s^{3} + C_{1} C_{11} C_{12} R_{1} R_{16} R_{17} R_{18} Rp1a2 s^{3} + C_{1} C_{11} C_{12} R_{1} R_{16} R_{17} R_{18} Rp1b2 s^{3} + C_{1} C_{11} C_{12} R_{1} R_{16} R_{17} Rp1a2 Rp1b2 s^{3} + C_{1} C_{11} C_{12} R_{1} R_{16} R_{18} Rp1a2 Rp1b2 s^{3} + C_{1} C_{11} C_{12} R_{1} R_{17} R_{18} Rp1a2 Rp1b2 s^{3} + C_{1} C_{11} R_{1} R_{15} R_{17} Rp1a2 s^{2} + C_{1} C_{11} R_{1} R_{15} R_{17} Rp1b2 s^{2} + C_{1} C_{11} R_{1} R_{15} Rp1a2 Rp1b2 s^{2} + C_{1} C_{11} R_{1} R_{16} R_{17} Rp1a2 s^{2} + C_{1} C_{11} R_{1} R_{16} R_{17} Rp1b2 s^{2} + C_{1} C_{11} R_{1} R_{16} Rp1a2 Rp1b2 s^{2} + C_{1} C_{11} R_{1} R_{17} Rp1a2 Rp1b2 s^{2} + C_{1} C_{12} R_{1} R_{17} R_{18} Rp1a2 s^{2} + C_{1} C_{12} R_{1} R_{17} R_{18} Rp1b2 s^{2} + C_{1} C_{12} R_{1} R_{17} Rp1a2 Rp1b2 s^{2} + C_{1} C_{12} R_{1} R_{18} Rp1a2 Rp1b2 s^{2} + C_{1} R_{1} R_{17} Rp1a2 s + C_{1} R_{1} R_{17} Rp1b2 s + C_{1} R_{1} Rp1a2 Rp1b2 s + C_{11} C_{12} R_{15} R_{17} R_{18} Rp1a2 s^{2} + C_{11} C_{12} R_{15} R_{17} R_{18} Rp1b2 s^{2} + C_{11} C_{12} R_{15} R_{17} Rp1a2 Rp1b2 s^{2} + C_{11} C_{12} R_{15} R_{18} Rp1a2 Rp1b2 s^{2} + C_{11} C_{12} R_{16} R_{17} R_{18} Rp1a2 s^{2} + C_{11} C_{12} R_{16} R_{17} R_{18} Rp1b2 s^{2} + C_{11} C_{12} R_{16} R_{17} Rp1a2 Rp1b2 s^{2} + C_{11} C_{12} R_{16} R_{18} Rp1a2 Rp1b2 s^{2} + C_{11} C_{12} R_{17} R_{18} Rp1a2 Rp1b2 s^{2} + C_{11} R_{15} R_{17} Rp1a2 s + C_{11} R_{15} R_{17} Rp1b2 s + C_{11} R_{15} Rp1a2 Rp1b2 s + C_{11} R_{16} R_{17} Rp1a2 s + C_{11} R_{16} R_{17} Rp1b2 s + C_{11} R_{16} Rp1a2 Rp1b2 s + C_{11} R_{17} Rp1a2 Rp1b2 s + C_{12} R_{17} R_{18} Rp1a2 s + C_{12} R_{17} R_{18} Rp1b2 s + C_{12} R_{17} Rp1a2 Rp1b2 s + C_{12} R_{18} Rp1a2 Rp1b2 s + R_{17} Rp1a2 + R_{17} Rp1b2 + Rp1a2 Rp1b2}\)
\(v_{3} = \frac{C_{11} C_{12} R_{16} R_{17} R_{18} Rp1a2 V_{1} s^{2} + C_{11} R_{16} R_{17} Rp1a2 V_{1} s + C_{12} R_{17} R_{18} Rp1a2 V_{1} s + R_{17} Rp1a2 V_{1}}{C_{11} C_{12} R_{15} R_{17} R_{18} Rp1a2 s^{2} + C_{11} C_{12} R_{15} R_{17} R_{18} Rp1b2 s^{2} + C_{11} C_{12} R_{15} R_{17} Rp1a2 Rp1b2 s^{2} + C_{11} C_{12} R_{15} R_{18} Rp1a2 Rp1b2 s^{2} + C_{11} C_{12} R_{16} R_{17} R_{18} Rp1a2 s^{2} + C_{11} C_{12} R_{16} R_{17} R_{18} Rp1b2 s^{2} + C_{11} C_{12} R_{16} R_{17} Rp1a2 Rp1b2 s^{2} + C_{11} C_{12} R_{16} R_{18} Rp1a2 Rp1b2 s^{2} + C_{11} C_{12} R_{17} R_{18} Rp1a2 Rp1b2 s^{2} + C_{11} R_{15} R_{17} Rp1a2 s + C_{11} R_{15} R_{17} Rp1b2 s + C_{11} R_{15} Rp1a2 Rp1b2 s + C_{11} R_{16} R_{17} Rp1a2 s + C_{11} R_{16} R_{17} Rp1b2 s + C_{11} R_{16} Rp1a2 Rp1b2 s + C_{11} R_{17} Rp1a2 Rp1b2 s + C_{12} R_{17} R_{18} Rp1a2 s + C_{12} R_{17} R_{18} Rp1b2 s + C_{12} R_{17} Rp1a2 Rp1b2 s + C_{12} R_{18} Rp1a2 Rp1b2 s + R_{17} Rp1a2 + R_{17} Rp1b2 + Rp1a2 Rp1b2}\)
\(v_{4} = \frac{C_{11} R_{15} R_{17} Rp1a2 V_{1} s + C_{11} R_{16} R_{17} Rp1a2 V_{1} s + R_{17} Rp1a2 V_{1}}{C_{11} C_{12} R_{15} R_{17} R_{18} Rp1a2 s^{2} + C_{11} C_{12} R_{15} R_{17} R_{18} Rp1b2 s^{2} + C_{11} C_{12} R_{15} R_{17} Rp1a2 Rp1b2 s^{2} + C_{11} C_{12} R_{15} R_{18} Rp1a2 Rp1b2 s^{2} + C_{11} C_{12} R_{16} R_{17} R_{18} Rp1a2 s^{2} + C_{11} C_{12} R_{16} R_{17} R_{18} Rp1b2 s^{2} + C_{11} C_{12} R_{16} R_{17} Rp1a2 Rp1b2 s^{2} + C_{11} C_{12} R_{16} R_{18} Rp1a2 Rp1b2 s^{2} + C_{11} C_{12} R_{17} R_{18} Rp1a2 Rp1b2 s^{2} + C_{11} R_{15} R_{17} Rp1a2 s + C_{11} R_{15} R_{17} Rp1b2 s + C_{11} R_{15} Rp1a2 Rp1b2 s + C_{11} R_{16} R_{17} Rp1a2 s + C_{11} R_{16} R_{17} Rp1b2 s + C_{11} R_{16} Rp1a2 Rp1b2 s + C_{11} R_{17} Rp1a2 Rp1b2 s + C_{12} R_{17} R_{18} Rp1a2 s + C_{12} R_{17} R_{18} Rp1b2 s + C_{12} R_{17} Rp1a2 Rp1b2 s + C_{12} R_{18} Rp1a2 Rp1b2 s + R_{17} Rp1a2 + R_{17} Rp1b2 + Rp1a2 Rp1b2}\)
\(v_{5} = \frac{C_{11} C_{12} R_{16} R_{17} R_{18} Rp1a2 V_{1} s^{2} + C_{11} R_{16} R_{17} Rp1a2 V_{1} s}{C_{11} C_{12} R_{15} R_{17} R_{18} Rp1a2 s^{2} + C_{11} C_{12} R_{15} R_{17} R_{18} Rp1b2 s^{2} + C_{11} C_{12} R_{15} R_{17} Rp1a2 Rp1b2 s^{2} + C_{11} C_{12} R_{15} R_{18} Rp1a2 Rp1b2 s^{2} + C_{11} C_{12} R_{16} R_{17} R_{18} Rp1a2 s^{2} + C_{11} C_{12} R_{16} R_{17} R_{18} Rp1b2 s^{2} + C_{11} C_{12} R_{16} R_{17} Rp1a2 Rp1b2 s^{2} + C_{11} C_{12} R_{16} R_{18} Rp1a2 Rp1b2 s^{2} + C_{11} C_{12} R_{17} R_{18} Rp1a2 Rp1b2 s^{2} + C_{11} R_{15} R_{17} Rp1a2 s + C_{11} R_{15} R_{17} Rp1b2 s + C_{11} R_{15} Rp1a2 Rp1b2 s + C_{11} R_{16} R_{17} Rp1a2 s + C_{11} R_{16} R_{17} Rp1b2 s + C_{11} R_{16} Rp1a2 Rp1b2 s + C_{11} R_{17} Rp1a2 Rp1b2 s + C_{12} R_{17} R_{18} Rp1a2 s + C_{12} R_{17} R_{18} Rp1b2 s + C_{12} R_{17} Rp1a2 Rp1b2 s + C_{12} R_{18} Rp1a2 Rp1b2 s + R_{17} Rp1a2 + R_{17} Rp1b2 + Rp1a2 Rp1b2}\)
\(v_{6} = 0\)
\(v_{7} = \frac{C_{11} C_{12} R_{15} R_{17} R_{18} Rp1a2 V_{1} s^{2} + C_{11} C_{12} R_{16} R_{17} R_{18} Rp1a2 V_{1} s^{2} + C_{11} R_{15} R_{17} Rp1a2 V_{1} s + C_{11} R_{16} R_{17} Rp1a2 V_{1} s + C_{12} R_{17} R_{18} Rp1a2 V_{1} s + R_{17} Rp1a2 V_{1}}{C_{11} C_{12} R_{15} R_{17} R_{18} Rp1a2 s^{2} + C_{11} C_{12} R_{15} R_{17} R_{18} Rp1b2 s^{2} + C_{11} C_{12} R_{15} R_{17} Rp1a2 Rp1b2 s^{2} + C_{11} C_{12} R_{15} R_{18} Rp1a2 Rp1b2 s^{2} + C_{11} C_{12} R_{16} R_{17} R_{18} Rp1a2 s^{2} + C_{11} C_{12} R_{16} R_{17} R_{18} Rp1b2 s^{2} + C_{11} C_{12} R_{16} R_{17} Rp1a2 Rp1b2 s^{2} + C_{11} C_{12} R_{16} R_{18} Rp1a2 Rp1b2 s^{2} + C_{11} C_{12} R_{17} R_{18} Rp1a2 Rp1b2 s^{2} + C_{11} R_{15} R_{17} Rp1a2 s + C_{11} R_{15} R_{17} Rp1b2 s + C_{11} R_{15} Rp1a2 Rp1b2 s + C_{11} R_{16} R_{17} Rp1a2 s + C_{11} R_{16} R_{17} Rp1b2 s + C_{11} R_{16} Rp1a2 Rp1b2 s + C_{11} R_{17} Rp1a2 Rp1b2 s + C_{12} R_{17} R_{18} Rp1a2 s + C_{12} R_{17} R_{18} Rp1b2 s + C_{12} R_{17} Rp1a2 Rp1b2 s + C_{12} R_{18} Rp1a2 Rp1b2 s + R_{17} Rp1a2 + R_{17} Rp1b2 + Rp1a2 Rp1b2}\)
\(I_{V1} = \frac{- C_{11} C_{12} R_{15} R_{17} R_{18} V_{1} s^{2} - C_{11} C_{12} R_{15} R_{17} Rp1a2 V_{1} s^{2} - C_{11} C_{12} R_{15} R_{18} Rp1a2 V_{1} s^{2} - C_{11} C_{12} R_{16} R_{17} R_{18} V_{1} s^{2} - C_{11} C_{12} R_{16} R_{17} Rp1a2 V_{1} s^{2} - C_{11} C_{12} R_{16} R_{18} Rp1a2 V_{1} s^{2} - C_{11} C_{12} R_{17} R_{18} Rp1a2 V_{1} s^{2} - C_{11} R_{15} R_{17} V_{1} s - C_{11} R_{15} Rp1a2 V_{1} s - C_{11} R_{16} R_{17} V_{1} s - C_{11} R_{16} Rp1a2 V_{1} s - C_{11} R_{17} Rp1a2 V_{1} s - C_{12} R_{17} R_{18} V_{1} s - C_{12} R_{17} Rp1a2 V_{1} s - C_{12} R_{18} Rp1a2 V_{1} s - R_{17} V_{1} - Rp1a2 V_{1}}{C_{11} C_{12} R_{15} R_{17} R_{18} Rp1a2 s^{2} + C_{11} C_{12} R_{15} R_{17} R_{18} Rp1b2 s^{2} + C_{11} C_{12} R_{15} R_{17} Rp1a2 Rp1b2 s^{2} + C_{11} C_{12} R_{15} R_{18} Rp1a2 Rp1b2 s^{2} + C_{11} C_{12} R_{16} R_{17} R_{18} Rp1a2 s^{2} + C_{11} C_{12} R_{16} R_{17} R_{18} Rp1b2 s^{2} + C_{11} C_{12} R_{16} R_{17} Rp1a2 Rp1b2 s^{2} + C_{11} C_{12} R_{16} R_{18} Rp1a2 Rp1b2 s^{2} + C_{11} C_{12} R_{17} R_{18} Rp1a2 Rp1b2 s^{2} + C_{11} R_{15} R_{17} Rp1a2 s + C_{11} R_{15} R_{17} Rp1b2 s + C_{11} R_{15} Rp1a2 Rp1b2 s + C_{11} R_{16} R_{17} Rp1a2 s + C_{11} R_{16} R_{17} Rp1b2 s + C_{11} R_{16} Rp1a2 Rp1b2 s + C_{11} R_{17} Rp1a2 Rp1b2 s + C_{12} R_{17} R_{18} Rp1a2 s + C_{12} R_{17} R_{18} Rp1b2 s + C_{12} R_{17} Rp1a2 Rp1b2 s + C_{12} R_{18} Rp1a2 Rp1b2 s + R_{17} Rp1a2 + R_{17} Rp1b2 + Rp1a2 Rp1b2}\)
\(I_{O1} = \frac{C_{11} C_{12} R_{15} R_{17} Rp1a2 V_{1} s^{2} + C_{11} C_{12} R_{15} R_{18} Rp1a2 V_{1} s^{2} + C_{11} C_{12} R_{16} R_{17} Rp1a2 V_{1} s^{2} + C_{11} C_{12} R_{16} R_{18} Rp1a2 V_{1} s^{2} + C_{11} C_{12} R_{17} R_{18} Rp1a2 V_{1} s^{2} + C_{11} R_{15} Rp1a2 V_{1} s + C_{11} R_{16} Rp1a2 V_{1} s + C_{11} R_{17} Rp1a2 V_{1} s + C_{12} R_{17} Rp1a2 V_{1} s + C_{12} R_{18} Rp1a2 V_{1} s + Rp1a2 V_{1}}{C_{11} C_{12} R_{15} R_{17} R_{18} Rp1a2 s^{2} + C_{11} C_{12} R_{15} R_{17} R_{18} Rp1b2 s^{2} + C_{11} C_{12} R_{15} R_{17} Rp1a2 Rp1b2 s^{2} + C_{11} C_{12} R_{15} R_{18} Rp1a2 Rp1b2 s^{2} + C_{11} C_{12} R_{16} R_{17} R_{18} Rp1a2 s^{2} + C_{11} C_{12} R_{16} R_{17} R_{18} Rp1b2 s^{2} + C_{11} C_{12} R_{16} R_{17} Rp1a2 Rp1b2 s^{2} + C_{11} C_{12} R_{16} R_{18} Rp1a2 Rp1b2 s^{2} + C_{11} C_{12} R_{17} R_{18} Rp1a2 Rp1b2 s^{2} + C_{11} R_{15} R_{17} Rp1a2 s + C_{11} R_{15} R_{17} Rp1b2 s + C_{11} R_{15} Rp1a2 Rp1b2 s + C_{11} R_{16} R_{17} Rp1a2 s + C_{11} R_{16} R_{17} Rp1b2 s + C_{11} R_{16} Rp1a2 Rp1b2 s + C_{11} R_{17} Rp1a2 Rp1b2 s + C_{12} R_{17} R_{18} Rp1a2 s + C_{12} R_{17} R_{18} Rp1b2 s + C_{12} R_{17} Rp1a2 Rp1b2 s + C_{12} R_{18} Rp1a2 Rp1b2 s + R_{17} Rp1a2 + R_{17} Rp1b2 + Rp1a2 Rp1b2}\)
Explanation of operation by looking at the pole and zero locations.
= cancel(U_sym[v2]/U_sym[v1])
H_sym H_sym
\(\displaystyle \frac{- C_{11} C_{12} R_{1} R_{15} R_{17} Rp1a2 s^{2} - C_{11} C_{12} R_{1} R_{15} R_{18} Rp1a2 s^{2} - C_{11} C_{12} R_{1} R_{16} R_{17} Rp1a2 s^{2} - C_{11} C_{12} R_{1} R_{16} R_{18} Rp1a2 s^{2} - C_{11} C_{12} R_{1} R_{17} R_{18} Rp1a2 s^{2} - C_{11} R_{1} R_{15} Rp1a2 s - C_{11} R_{1} R_{16} Rp1a2 s - C_{11} R_{1} R_{17} Rp1a2 s - C_{12} R_{1} R_{17} Rp1a2 s - C_{12} R_{1} R_{18} Rp1a2 s - R_{1} Rp1a2}{C_{1} C_{11} C_{12} R_{1} R_{15} R_{17} R_{18} Rp1a2 s^{3} + C_{1} C_{11} C_{12} R_{1} R_{15} R_{17} R_{18} Rp1b2 s^{3} + C_{1} C_{11} C_{12} R_{1} R_{15} R_{17} Rp1a2 Rp1b2 s^{3} + C_{1} C_{11} C_{12} R_{1} R_{15} R_{18} Rp1a2 Rp1b2 s^{3} + C_{1} C_{11} C_{12} R_{1} R_{16} R_{17} R_{18} Rp1a2 s^{3} + C_{1} C_{11} C_{12} R_{1} R_{16} R_{17} R_{18} Rp1b2 s^{3} + C_{1} C_{11} C_{12} R_{1} R_{16} R_{17} Rp1a2 Rp1b2 s^{3} + C_{1} C_{11} C_{12} R_{1} R_{16} R_{18} Rp1a2 Rp1b2 s^{3} + C_{1} C_{11} C_{12} R_{1} R_{17} R_{18} Rp1a2 Rp1b2 s^{3} + C_{1} C_{11} R_{1} R_{15} R_{17} Rp1a2 s^{2} + C_{1} C_{11} R_{1} R_{15} R_{17} Rp1b2 s^{2} + C_{1} C_{11} R_{1} R_{15} Rp1a2 Rp1b2 s^{2} + C_{1} C_{11} R_{1} R_{16} R_{17} Rp1a2 s^{2} + C_{1} C_{11} R_{1} R_{16} R_{17} Rp1b2 s^{2} + C_{1} C_{11} R_{1} R_{16} Rp1a2 Rp1b2 s^{2} + C_{1} C_{11} R_{1} R_{17} Rp1a2 Rp1b2 s^{2} + C_{1} C_{12} R_{1} R_{17} R_{18} Rp1a2 s^{2} + C_{1} C_{12} R_{1} R_{17} R_{18} Rp1b2 s^{2} + C_{1} C_{12} R_{1} R_{17} Rp1a2 Rp1b2 s^{2} + C_{1} C_{12} R_{1} R_{18} Rp1a2 Rp1b2 s^{2} + C_{1} R_{1} R_{17} Rp1a2 s + C_{1} R_{1} R_{17} Rp1b2 s + C_{1} R_{1} Rp1a2 Rp1b2 s + C_{11} C_{12} R_{15} R_{17} R_{18} Rp1a2 s^{2} + C_{11} C_{12} R_{15} R_{17} R_{18} Rp1b2 s^{2} + C_{11} C_{12} R_{15} R_{17} Rp1a2 Rp1b2 s^{2} + C_{11} C_{12} R_{15} R_{18} Rp1a2 Rp1b2 s^{2} + C_{11} C_{12} R_{16} R_{17} R_{18} Rp1a2 s^{2} + C_{11} C_{12} R_{16} R_{17} R_{18} Rp1b2 s^{2} + C_{11} C_{12} R_{16} R_{17} Rp1a2 Rp1b2 s^{2} + C_{11} C_{12} R_{16} R_{18} Rp1a2 Rp1b2 s^{2} + C_{11} C_{12} R_{17} R_{18} Rp1a2 Rp1b2 s^{2} + C_{11} R_{15} R_{17} Rp1a2 s + C_{11} R_{15} R_{17} Rp1b2 s + C_{11} R_{15} Rp1a2 Rp1b2 s + C_{11} R_{16} R_{17} Rp1a2 s + C_{11} R_{16} R_{17} Rp1b2 s + C_{11} R_{16} Rp1a2 Rp1b2 s + C_{11} R_{17} Rp1a2 Rp1b2 s + C_{12} R_{17} R_{18} Rp1a2 s + C_{12} R_{17} R_{18} Rp1b2 s + C_{12} R_{17} Rp1a2 Rp1b2 s + C_{12} R_{18} Rp1a2 Rp1b2 s + R_{17} Rp1a2 + R_{17} Rp1b2 + Rp1a2 Rp1b2}\)
= fraction(H_sym) #returns numerator and denominator sym_num, sym_denom
sym_num.subs(element_values)
\(\displaystyle - 3510.1836 s^{2} - 24778320.0 s - 19600000000.0\)
sym_num
\(\displaystyle - C_{11} C_{12} R_{1} R_{15} R_{17} Rp1a2 s^{2} - C_{11} C_{12} R_{1} R_{15} R_{18} Rp1a2 s^{2} - C_{11} C_{12} R_{1} R_{16} R_{17} Rp1a2 s^{2} - C_{11} C_{12} R_{1} R_{16} R_{18} Rp1a2 s^{2} - C_{11} C_{12} R_{1} R_{17} R_{18} Rp1a2 s^{2} - C_{11} R_{1} R_{15} Rp1a2 s - C_{11} R_{1} R_{16} Rp1a2 s - C_{11} R_{1} R_{17} Rp1a2 s - C_{12} R_{1} R_{17} Rp1a2 s - C_{12} R_{1} R_{18} Rp1a2 s - R_{1} Rp1a2\)
= solve(sym_num,s) nr
len(nr)
\(\displaystyle 2\)
0].subs(element_values))/(2*np.pi) N(nr[
\(\displaystyle -978.999657124153\)
0].free_symbols nr[
\(\displaystyle \left\{C_{11}, C_{12}, R_{15}, R_{16}, R_{17}, R_{18}\right\}\)
1].subs(element_values))/(2*np.pi) N(nr[
\(\displaystyle -144.472092191972\)
1].free_symbols nr[
\(\displaystyle \left\{C_{11}, C_{12}, R_{15}, R_{16}, R_{17}, R_{18}\right\}\)
Try plotting the location of the zeros as a function of P1a
sym_denom.subs(element_values)
\(\displaystyle 0.1866030366816 s^{3} + 2009.3743704 s^{2} + 6116648.0 s + 5200000000.0\)
sym_denom
\(\displaystyle C_{1} C_{11} C_{12} R_{1} R_{15} R_{17} R_{18} Rp1a2 s^{3} + C_{1} C_{11} C_{12} R_{1} R_{15} R_{17} R_{18} Rp1b2 s^{3} + C_{1} C_{11} C_{12} R_{1} R_{15} R_{17} Rp1a2 Rp1b2 s^{3} + C_{1} C_{11} C_{12} R_{1} R_{15} R_{18} Rp1a2 Rp1b2 s^{3} + C_{1} C_{11} C_{12} R_{1} R_{16} R_{17} R_{18} Rp1a2 s^{3} + C_{1} C_{11} C_{12} R_{1} R_{16} R_{17} R_{18} Rp1b2 s^{3} + C_{1} C_{11} C_{12} R_{1} R_{16} R_{17} Rp1a2 Rp1b2 s^{3} + C_{1} C_{11} C_{12} R_{1} R_{16} R_{18} Rp1a2 Rp1b2 s^{3} + C_{1} C_{11} C_{12} R_{1} R_{17} R_{18} Rp1a2 Rp1b2 s^{3} + C_{1} C_{11} R_{1} R_{15} R_{17} Rp1a2 s^{2} + C_{1} C_{11} R_{1} R_{15} R_{17} Rp1b2 s^{2} + C_{1} C_{11} R_{1} R_{15} Rp1a2 Rp1b2 s^{2} + C_{1} C_{11} R_{1} R_{16} R_{17} Rp1a2 s^{2} + C_{1} C_{11} R_{1} R_{16} R_{17} Rp1b2 s^{2} + C_{1} C_{11} R_{1} R_{16} Rp1a2 Rp1b2 s^{2} + C_{1} C_{11} R_{1} R_{17} Rp1a2 Rp1b2 s^{2} + C_{1} C_{12} R_{1} R_{17} R_{18} Rp1a2 s^{2} + C_{1} C_{12} R_{1} R_{17} R_{18} Rp1b2 s^{2} + C_{1} C_{12} R_{1} R_{17} Rp1a2 Rp1b2 s^{2} + C_{1} C_{12} R_{1} R_{18} Rp1a2 Rp1b2 s^{2} + C_{1} R_{1} R_{17} Rp1a2 s + C_{1} R_{1} R_{17} Rp1b2 s + C_{1} R_{1} Rp1a2 Rp1b2 s + C_{11} C_{12} R_{15} R_{17} R_{18} Rp1a2 s^{2} + C_{11} C_{12} R_{15} R_{17} R_{18} Rp1b2 s^{2} + C_{11} C_{12} R_{15} R_{17} Rp1a2 Rp1b2 s^{2} + C_{11} C_{12} R_{15} R_{18} Rp1a2 Rp1b2 s^{2} + C_{11} C_{12} R_{16} R_{17} R_{18} Rp1a2 s^{2} + C_{11} C_{12} R_{16} R_{17} R_{18} Rp1b2 s^{2} + C_{11} C_{12} R_{16} R_{17} Rp1a2 Rp1b2 s^{2} + C_{11} C_{12} R_{16} R_{18} Rp1a2 Rp1b2 s^{2} + C_{11} C_{12} R_{17} R_{18} Rp1a2 Rp1b2 s^{2} + C_{11} R_{15} R_{17} Rp1a2 s + C_{11} R_{15} R_{17} Rp1b2 s + C_{11} R_{15} Rp1a2 Rp1b2 s + C_{11} R_{16} R_{17} Rp1a2 s + C_{11} R_{16} R_{17} Rp1b2 s + C_{11} R_{16} Rp1a2 Rp1b2 s + C_{11} R_{17} Rp1a2 Rp1b2 s + C_{12} R_{17} R_{18} Rp1a2 s + C_{12} R_{17} R_{18} Rp1b2 s + C_{12} R_{17} Rp1a2 Rp1b2 s + C_{12} R_{18} Rp1a2 Rp1b2 s + R_{17} Rp1a2 + R_{17} Rp1b2 + Rp1a2 Rp1b2\)
= solve(sym_denom,s) dr
len(dr)
\(\displaystyle 3\)
0].subs(element_values))/(2*np.pi) N(dr[
\(\displaystyle -495.131107179864\)
0].free_symbols dr[
\(\displaystyle \left\{C_{1}, R_{1}\right\}\)
1].subs(element_values))/(2*np.pi) N(dr[
\(\displaystyle -989.336941523892\)
1].free_symbols dr[
\(\displaystyle \left\{C_{11}, C_{12}, R_{15}, R_{16}, R_{17}, R_{18}, Rp1a2, Rp1b2\right\}\)
2].subs(element_values))/(2*np.pi) N(dr[
\(\displaystyle -229.340414751218\)
2].free_symbols dr[
\(\displaystyle \left\{C_{11}, C_{12}, R_{15}, R_{16}, R_{17}, R_{18}, Rp1a2, Rp1b2\right\}\)
= NE_sym.subs(element_values) NE
Display the equations with component values.
= ''
temp for i in range(shape(NE.lhs)[0]):
+= '${:s} = {:s}$<br>'.format(latex(NE.rhs[i]),latex(NE.lhs[i]))
temp
Markdown(temp)
\(0 = I_{V1} + 2.0 \cdot 10^{-5} v_{1} - 2.0 \cdot 10^{-5} v_{7}\)
\(0 = I_{O1} + v_{2} \cdot \left(8.2 \cdot 10^{-10} s + 2.55102040816327 \cdot 10^{-6}\right) + v_{6} \left(- 8.2 \cdot 10^{-10} s - 2.55102040816327 \cdot 10^{-6}\right)\)
\(0 = - 2.2 \cdot 10^{-9} s v_{5} + v_{3} \cdot \left(2.2 \cdot 10^{-9} s + 4.54545454545455 \cdot 10^{-5}\right) - 4.54545454545455 \cdot 10^{-5} v_{7}\)
\(0 = - 2.7 \cdot 10^{-8} s v_{6} + v_{4} \cdot \left(2.7 \cdot 10^{-8} s + 8.33333333333333 \cdot 10^{-5}\right) - 8.33333333333333 \cdot 10^{-5} v_{7}\)
\(0 = - 2.2 \cdot 10^{-9} s v_{3} + v_{5} \cdot \left(2.2 \cdot 10^{-9} s + 2.12765957446809 \cdot 10^{-5}\right) - 2.12765957446809 \cdot 10^{-5} v_{6}\)
\(0 = - 2.7 \cdot 10^{-8} s v_{4} + v_{2} \left(- 8.2 \cdot 10^{-10} s - 2.55102040816327 \cdot 10^{-6}\right) - 2.12765957446809 \cdot 10^{-5} v_{5} + v_{6} \cdot \left(2.782 \cdot 10^{-8} s + 6.08646531898811 \cdot 10^{-5}\right) - 3.7037037037037 \cdot 10^{-5} v_{7}\)
\(0 = - 2.0 \cdot 10^{-5} v_{1} - 4.54545454545455 \cdot 10^{-5} v_{3} - 8.33333333333333 \cdot 10^{-5} v_{4} - 3.7037037037037 \cdot 10^{-5} v_{6} + 0.000205824915824916 v_{7}\)
\(1.0 = v_{1}\)
\(0 = v_{6}\)
Solve for voltages and currents and display the results.
= solve(NE,X) U
= ''
temp for i in U.keys():
+= '${:s} = {:s}$<br>'.format(latex(i),latex(U[i]))
temp
Markdown(temp)
\(v_{1} = 1.0\)
\(v_{2} = \frac{- 5.30431515957447 \cdot 10^{50} s^{2} - 3.74430609284333 \cdot 10^{54} s - 2.96179883945842 \cdot 10^{57}}{2.81979927287234 \cdot 10^{46} s^{3} + 3.03640952973888 \cdot 10^{50} s^{2} + 9.24300048355902 \cdot 10^{53} s + 7.85783365570603 \cdot 10^{56}}\)
\(v_{3} = \frac{1.215 \cdot 10^{41} s^{2} + 1.55004835589942 \cdot 10^{45} s + 3.62669245647969 \cdot 10^{48}}{1.55953723404256 \cdot 10^{42} s^{2} + 1.19416505480336 \cdot 10^{46} s + 1.39694820545885 \cdot 10^{49}}\)
\(v_{4} = \frac{5.50531914893617 \cdot 10^{44} s + 3.62669245647969 \cdot 10^{48}}{1.55953723404256 \cdot 10^{42} s^{2} + 1.19416505480336 \cdot 10^{46} s + 1.39694820545885 \cdot 10^{49}}\)
\(v_{5} = \frac{1.215 \cdot 10^{41} s^{2} + 3.75 \cdot 10^{44} s}{1.55953723404256 \cdot 10^{42} s^{2} + 1.19416505480336 \cdot 10^{46} s + 1.39694820545885 \cdot 10^{49}}\)
\(v_{6} = 0.0\)
\(v_{7} = \frac{1.78372340425532 \cdot 10^{41} s^{2} + 1.72558027079304 \cdot 10^{45} s + 3.62669245647969 \cdot 10^{48}}{1.55953723404256 \cdot 10^{42} s^{2} + 1.19416505480336 \cdot 10^{46} s + 1.39694820545885 \cdot 10^{49}}\)
\(I_{V1} = \frac{- 1.38116489361702 \cdot 10^{42} s^{2} - 1.02160702772405 \cdot 10^{46} s - 1.03427895981088 \cdot 10^{49}}{7.79768617021278 \cdot 10^{46} s^{2} + 5.97082527401678 \cdot 10^{50} s + 6.98474102729425 \cdot 10^{53}}\)
\(I_{O1} = \frac{2.16502659574468 \cdot 10^{38} s^{2} + 1.52828820116054 \cdot 10^{42} s + 1.20889748549323 \cdot 10^{45}}{1.4035835106383 \cdot 10^{43} s^{2} + 1.07474854932302 \cdot 10^{47} s + 1.25725338491296 \cdot 10^{50}}\)
Plot the frequency response of the transfer function
= U[v2]/U[v1]
H H
\(\displaystyle \frac{1.0 \left(- 5.30431515957447 \cdot 10^{50} s^{2} - 3.74430609284333 \cdot 10^{54} s - 2.96179883945842 \cdot 10^{57}\right)}{2.81979927287234 \cdot 10^{46} s^{3} + 3.03640952973888 \cdot 10^{50} s^{2} + 9.24300048355902 \cdot 10^{53} s + 7.85783365570603 \cdot 10^{56}}\)
= fraction(H) #returns numerator and denominator
num, denom
# convert symbolic to numpy polynomial
= np.array(Poly(num, s).all_coeffs(), dtype=float)
a = np.array(Poly(denom, s).all_coeffs(), dtype=float)
b
= np.logspace(1, 5, 2000, endpoint=False)*2*np.pi
x = signal.bode((a, b), w=x) # returns: rad/s, mag in dB, phase in deg w, mag, phase
= plt.subplots()
fig, ax1 'magnitude, dB')
ax1.set_ylabel('frequency, Hz')
ax1.set_xlabel(
/(2*np.pi), mag,'-k',label='MNA mag, dB') # MNA magnitude plot
plt.semilogx(w
='y')
ax1.tick_params(axis#ax1.set_ylim((-30,20))
plt.grid()='upper right')
plt.legend(loc
# instantiate a second y-axes that shares the same x-axis
= ax1.twinx()
ax2 = 'tab:blue'
color
/(2*np.pi), phase,':',color='b',label='MNA phase') # MNA phase plot
plt.semilogx(w='lower right')
plt.legend(loc
'phase, deg',color=color)
ax2.set_ylabel(='y', labelcolor=color)
ax2.tick_params(axis#ax2.set_ylim((-5,25))
# highlight the guitar audio band, 80 to 8kHz
80, 8e3, color='y', alpha=0.3)
plt.axvspan(
'Magnitude and phase response')
plt.title( plt.show()
= np.logspace(1, 5, 2000, endpoint=False)*2*np.pi
x_axis = ['tab:blue','tab:red','tab:green','tab:orange','k']
color_list = np.array([1,25,50,75,99])/100
gain_setting = 100e3
p1_value
= []
tf_num_coef_list = []
tf_denom_coef_list
#clean_path1_mag = np.zeros((len(gain_setting),len(x_axis)))
#color_list = ['tab:blue','tab:red','tab:green','tab:orange','k']
= plt.subplots()
fig, ax1 'magnitude, dB')
ax1.set_ylabel('frequency, Hz')
ax1.set_xlabel(
# instantiate a second y-axes that shares the same x-axis
= ax1.twinx()
ax2 = 'k'
color
'phase, deg',color=color)
ax2.set_ylabel(='y', labelcolor=color)
ax2.tick_params(axis
for i in range(len(gain_setting)):
= p1_value - gain_setting[i]*p1_value
element_values[Rp1a2] = gain_setting[i]*p1_value
element_values[Rp1b2]
#element_values[Rp1a2] = p1_value - gain_setting[i]*p1_value
#element_values[Rp1b2] = gain_setting[i]*p1_value
= NE_sym.subs(element_values)
NE = solve(NE,X)
U = U[v2]/U[v1]
H = fraction(H) #returns numerator and denominator
num, denom
# convert symbolic to numpy polynomial
= np.array(Poly(num, s).all_coeffs(), dtype=float)
a = np.array(Poly(denom, s).all_coeffs(), dtype=float)
b
tf_num_coef_list.append(a)
tf_denom_coef_list.append(b)
#x = np.logspace(1, 5, 2000, endpoint=False)*2*np.pi
= signal.bode((a, b), w=x_axis) # returns: rad/s, mag in dB, phase in deg
w, mag, phase #clean_path1_mag[i] = mag
# plot the results.
/(2*np.pi), mag,'-',color=color_list[i],label='mag: {:.0f}%'.format(gain_setting[i]*100)) # magnitude plot
ax1.semilogx(w/(2*np.pi), phase,':',color=color_list[i],label='phase: {:.0f}%'.format(gain_setting[i]*100)) # phase plot
ax2.semilogx(w
# highlight the guitar audio band, 80 to 8kHz
80, 8e3, color='y', alpha=0.3)
plt.axvspan(
='lower left')
ax1.legend(loc='lower right')
ax2.legend(loc
ax1.grid()'Magnitude and phase response')
plt.title( plt.show()
= '''
sum_path2b_v1_net_list * Klon-Centaur_sum_path3_v1.asc simplified
Rp1a2 6 0 50e3
R13 4 3 1e3
C11 4 7 2.2e-9
R15 7 6 22e3
R17 5 6 27e3
R18 8 6 12e3
C12 5 8 27e-9
R16 5 4 47e3
R20 2 5 392e3
C13 2 5 820e-12
O2a 5 0 2
C9 1 3 0.5e-6
V3 1 0 1
'''
= SymMNA.smna(sum_path2b_v1_net_list) report, network_df, i_unk_df, A, X, Z
Build the network equations
# Put matrices into SymPy
= Matrix(X)
X = Matrix(Z)
Z
= Eq(A*X,Z)
NE_sym
# display the equations
= ''
temp for i in range(shape(NE_sym.lhs)[0]):
+= '${:s} = {:s}$<br>'.format(latex(NE_sym.rhs[i]),latex(NE_sym.lhs[i]))
temp Markdown(temp)
\(0 = C_{9} s v_{1} - C_{9} s v_{3} + I_{V3}\)
\(0 = I_{O2a} + v_{2} \left(C_{13} s + \frac{1}{R_{20}}\right) + v_{5} \left(- C_{13} s - \frac{1}{R_{20}}\right)\)
\(0 = - C_{9} s v_{1} + v_{3} \left(C_{9} s + \frac{1}{R_{13}}\right) - \frac{v_{4}}{R_{13}}\)
\(0 = - C_{11} s v_{7} + v_{4} \left(C_{11} s + \frac{1}{R_{16}} + \frac{1}{R_{13}}\right) - \frac{v_{5}}{R_{16}} - \frac{v_{3}}{R_{13}}\)
\(0 = - C_{12} s v_{8} + v_{2} \left(- C_{13} s - \frac{1}{R_{20}}\right) + v_{5} \left(C_{12} s + C_{13} s + \frac{1}{R_{20}} + \frac{1}{R_{17}} + \frac{1}{R_{16}}\right) - \frac{v_{6}}{R_{17}} - \frac{v_{4}}{R_{16}}\)
\(0 = v_{6} \cdot \left(\frac{1}{Rp1a2} + \frac{1}{R_{18}} + \frac{1}{R_{17}} + \frac{1}{R_{15}}\right) - \frac{v_{8}}{R_{18}} - \frac{v_{5}}{R_{17}} - \frac{v_{7}}{R_{15}}\)
\(0 = - C_{11} s v_{4} + v_{7} \left(C_{11} s + \frac{1}{R_{15}}\right) - \frac{v_{6}}{R_{15}}\)
\(0 = - C_{12} s v_{5} + v_{8} \left(C_{12} s + \frac{1}{R_{18}}\right) - \frac{v_{6}}{R_{18}}\)
\(V_{3} = v_{1}\)
\(0 = v_{5}\)
Turn the free symbols into SymPy variables.
str(NE_sym.free_symbols).replace('{','').replace('}','')) var(
\(\displaystyle \left( V_{3}, \ v_{2}, \ v_{5}, \ R_{16}, \ s, \ R_{20}, \ Rp1a2, \ R_{18}, \ v_{7}, \ I_{V3}, \ v_{3}, \ C_{12}, \ v_{1}, \ I_{O2a}, \ R_{13}, \ v_{4}, \ v_{8}, \ C_{9}, \ v_{6}, \ R_{15}, \ C_{11}, \ R_{17}, \ C_{13}\right)\)
= SymMNA.get_part_values(network_df) element_values
The network equations can be solved symbolically.
= solve(NE_sym,X) U_sym
Display the symbolic solution
= ''
temp for i in U_sym.keys():
+= '${:s} = {:s}$<br>'.format(latex(i),latex(U_sym[i]))
temp
Markdown(temp)
\(v_{1} = V_{3}\)
\(v_{2} = \frac{- C_{11} C_{12} C_{9} R_{15} R_{17} R_{18} R_{20} V_{3} s^{3} - C_{11} C_{12} C_{9} R_{15} R_{17} R_{20} Rp1a2 V_{3} s^{3} - C_{11} C_{12} C_{9} R_{15} R_{18} R_{20} Rp1a2 V_{3} s^{3} - C_{11} C_{12} C_{9} R_{16} R_{17} R_{20} Rp1a2 V_{3} s^{3} - C_{11} C_{12} C_{9} R_{16} R_{18} R_{20} Rp1a2 V_{3} s^{3} - C_{11} C_{12} C_{9} R_{17} R_{18} R_{20} Rp1a2 V_{3} s^{3} - C_{11} C_{9} R_{15} R_{17} R_{20} V_{3} s^{2} - C_{11} C_{9} R_{15} R_{20} Rp1a2 V_{3} s^{2} - C_{11} C_{9} R_{16} R_{20} Rp1a2 V_{3} s^{2} - C_{11} C_{9} R_{17} R_{20} Rp1a2 V_{3} s^{2} - C_{12} C_{9} R_{17} R_{18} R_{20} V_{3} s^{2} - C_{12} C_{9} R_{17} R_{20} Rp1a2 V_{3} s^{2} - C_{12} C_{9} R_{18} R_{20} Rp1a2 V_{3} s^{2} - C_{9} R_{17} R_{20} V_{3} s - C_{9} R_{20} Rp1a2 V_{3} s}{C_{11} C_{12} C_{13} C_{9} R_{13} R_{15} R_{17} R_{18} R_{20} s^{4} + C_{11} C_{12} C_{13} C_{9} R_{13} R_{15} R_{17} R_{20} Rp1a2 s^{4} + C_{11} C_{12} C_{13} C_{9} R_{13} R_{15} R_{18} R_{20} Rp1a2 s^{4} + C_{11} C_{12} C_{13} C_{9} R_{13} R_{16} R_{17} R_{18} R_{20} s^{4} + C_{11} C_{12} C_{13} C_{9} R_{13} R_{16} R_{17} R_{20} Rp1a2 s^{4} + C_{11} C_{12} C_{13} C_{9} R_{13} R_{16} R_{18} R_{20} Rp1a2 s^{4} + C_{11} C_{12} C_{13} C_{9} R_{13} R_{17} R_{18} R_{20} Rp1a2 s^{4} + C_{11} C_{12} C_{13} C_{9} R_{15} R_{16} R_{17} R_{18} R_{20} s^{4} + C_{11} C_{12} C_{13} C_{9} R_{15} R_{16} R_{17} R_{20} Rp1a2 s^{4} + C_{11} C_{12} C_{13} C_{9} R_{15} R_{16} R_{18} R_{20} Rp1a2 s^{4} + C_{11} C_{12} C_{13} C_{9} R_{16} R_{17} R_{18} R_{20} Rp1a2 s^{4} + C_{11} C_{12} C_{13} R_{15} R_{17} R_{18} R_{20} s^{3} + C_{11} C_{12} C_{13} R_{15} R_{17} R_{20} Rp1a2 s^{3} + C_{11} C_{12} C_{13} R_{15} R_{18} R_{20} Rp1a2 s^{3} + C_{11} C_{12} C_{13} R_{16} R_{17} R_{18} R_{20} s^{3} + C_{11} C_{12} C_{13} R_{16} R_{17} R_{20} Rp1a2 s^{3} + C_{11} C_{12} C_{13} R_{16} R_{18} R_{20} Rp1a2 s^{3} + C_{11} C_{12} C_{13} R_{17} R_{18} R_{20} Rp1a2 s^{3} + C_{11} C_{12} C_{9} R_{13} R_{15} R_{17} R_{18} s^{3} + C_{11} C_{12} C_{9} R_{13} R_{15} R_{17} Rp1a2 s^{3} + C_{11} C_{12} C_{9} R_{13} R_{15} R_{18} Rp1a2 s^{3} + C_{11} C_{12} C_{9} R_{13} R_{16} R_{17} R_{18} s^{3} + C_{11} C_{12} C_{9} R_{13} R_{16} R_{17} Rp1a2 s^{3} + C_{11} C_{12} C_{9} R_{13} R_{16} R_{18} Rp1a2 s^{3} + C_{11} C_{12} C_{9} R_{13} R_{17} R_{18} Rp1a2 s^{3} + C_{11} C_{12} C_{9} R_{15} R_{16} R_{17} R_{18} s^{3} + C_{11} C_{12} C_{9} R_{15} R_{16} R_{17} Rp1a2 s^{3} + C_{11} C_{12} C_{9} R_{15} R_{16} R_{18} Rp1a2 s^{3} + C_{11} C_{12} C_{9} R_{16} R_{17} R_{18} Rp1a2 s^{3} + C_{11} C_{12} R_{15} R_{17} R_{18} s^{2} + C_{11} C_{12} R_{15} R_{17} Rp1a2 s^{2} + C_{11} C_{12} R_{15} R_{18} Rp1a2 s^{2} + C_{11} C_{12} R_{16} R_{17} R_{18} s^{2} + C_{11} C_{12} R_{16} R_{17} Rp1a2 s^{2} + C_{11} C_{12} R_{16} R_{18} Rp1a2 s^{2} + C_{11} C_{12} R_{17} R_{18} Rp1a2 s^{2} + C_{11} C_{13} C_{9} R_{13} R_{15} R_{17} R_{20} s^{3} + C_{11} C_{13} C_{9} R_{13} R_{15} R_{20} Rp1a2 s^{3} + C_{11} C_{13} C_{9} R_{13} R_{16} R_{17} R_{20} s^{3} + C_{11} C_{13} C_{9} R_{13} R_{16} R_{20} Rp1a2 s^{3} + C_{11} C_{13} C_{9} R_{13} R_{17} R_{20} Rp1a2 s^{3} + C_{11} C_{13} C_{9} R_{15} R_{16} R_{17} R_{20} s^{3} + C_{11} C_{13} C_{9} R_{15} R_{16} R_{20} Rp1a2 s^{3} + C_{11} C_{13} C_{9} R_{16} R_{17} R_{20} Rp1a2 s^{3} + C_{11} C_{13} R_{15} R_{17} R_{20} s^{2} + C_{11} C_{13} R_{15} R_{20} Rp1a2 s^{2} + C_{11} C_{13} R_{16} R_{17} R_{20} s^{2} + C_{11} C_{13} R_{16} R_{20} Rp1a2 s^{2} + C_{11} C_{13} R_{17} R_{20} Rp1a2 s^{2} + C_{11} C_{9} R_{13} R_{15} R_{17} s^{2} + C_{11} C_{9} R_{13} R_{15} Rp1a2 s^{2} + C_{11} C_{9} R_{13} R_{16} R_{17} s^{2} + C_{11} C_{9} R_{13} R_{16} Rp1a2 s^{2} + C_{11} C_{9} R_{13} R_{17} Rp1a2 s^{2} + C_{11} C_{9} R_{15} R_{16} R_{17} s^{2} + C_{11} C_{9} R_{15} R_{16} Rp1a2 s^{2} + C_{11} C_{9} R_{16} R_{17} Rp1a2 s^{2} + C_{11} R_{15} R_{17} s + C_{11} R_{15} Rp1a2 s + C_{11} R_{16} R_{17} s + C_{11} R_{16} Rp1a2 s + C_{11} R_{17} Rp1a2 s + C_{12} C_{13} C_{9} R_{13} R_{17} R_{18} R_{20} s^{3} + C_{12} C_{13} C_{9} R_{13} R_{17} R_{20} Rp1a2 s^{3} + C_{12} C_{13} C_{9} R_{13} R_{18} R_{20} Rp1a2 s^{3} + C_{12} C_{13} C_{9} R_{16} R_{17} R_{18} R_{20} s^{3} + C_{12} C_{13} C_{9} R_{16} R_{17} R_{20} Rp1a2 s^{3} + C_{12} C_{13} C_{9} R_{16} R_{18} R_{20} Rp1a2 s^{3} + C_{12} C_{13} R_{17} R_{18} R_{20} s^{2} + C_{12} C_{13} R_{17} R_{20} Rp1a2 s^{2} + C_{12} C_{13} R_{18} R_{20} Rp1a2 s^{2} + C_{12} C_{9} R_{13} R_{17} R_{18} s^{2} + C_{12} C_{9} R_{13} R_{17} Rp1a2 s^{2} + C_{12} C_{9} R_{13} R_{18} Rp1a2 s^{2} + C_{12} C_{9} R_{16} R_{17} R_{18} s^{2} + C_{12} C_{9} R_{16} R_{17} Rp1a2 s^{2} + C_{12} C_{9} R_{16} R_{18} Rp1a2 s^{2} + C_{12} R_{17} R_{18} s + C_{12} R_{17} Rp1a2 s + C_{12} R_{18} Rp1a2 s + C_{13} C_{9} R_{13} R_{17} R_{20} s^{2} + C_{13} C_{9} R_{13} R_{20} Rp1a2 s^{2} + C_{13} C_{9} R_{16} R_{17} R_{20} s^{2} + C_{13} C_{9} R_{16} R_{20} Rp1a2 s^{2} + C_{13} R_{17} R_{20} s + C_{13} R_{20} Rp1a2 s + C_{9} R_{13} R_{17} s + C_{9} R_{13} Rp1a2 s + C_{9} R_{16} R_{17} s + C_{9} R_{16} Rp1a2 s + R_{17} + Rp1a2}\)
\(v_{3} = \frac{C_{11} C_{12} C_{9} R_{13} R_{15} R_{17} R_{18} V_{3} s^{3} + C_{11} C_{12} C_{9} R_{13} R_{15} R_{17} Rp1a2 V_{3} s^{3} + C_{11} C_{12} C_{9} R_{13} R_{15} R_{18} Rp1a2 V_{3} s^{3} + C_{11} C_{12} C_{9} R_{13} R_{16} R_{17} R_{18} V_{3} s^{3} + C_{11} C_{12} C_{9} R_{13} R_{16} R_{17} Rp1a2 V_{3} s^{3} + C_{11} C_{12} C_{9} R_{13} R_{16} R_{18} Rp1a2 V_{3} s^{3} + C_{11} C_{12} C_{9} R_{13} R_{17} R_{18} Rp1a2 V_{3} s^{3} + C_{11} C_{12} C_{9} R_{15} R_{16} R_{17} R_{18} V_{3} s^{3} + C_{11} C_{12} C_{9} R_{15} R_{16} R_{17} Rp1a2 V_{3} s^{3} + C_{11} C_{12} C_{9} R_{15} R_{16} R_{18} Rp1a2 V_{3} s^{3} + C_{11} C_{12} C_{9} R_{16} R_{17} R_{18} Rp1a2 V_{3} s^{3} + C_{11} C_{9} R_{13} R_{15} R_{17} V_{3} s^{2} + C_{11} C_{9} R_{13} R_{15} Rp1a2 V_{3} s^{2} + C_{11} C_{9} R_{13} R_{16} R_{17} V_{3} s^{2} + C_{11} C_{9} R_{13} R_{16} Rp1a2 V_{3} s^{2} + C_{11} C_{9} R_{13} R_{17} Rp1a2 V_{3} s^{2} + C_{11} C_{9} R_{15} R_{16} R_{17} V_{3} s^{2} + C_{11} C_{9} R_{15} R_{16} Rp1a2 V_{3} s^{2} + C_{11} C_{9} R_{16} R_{17} Rp1a2 V_{3} s^{2} + C_{12} C_{9} R_{13} R_{17} R_{18} V_{3} s^{2} + C_{12} C_{9} R_{13} R_{17} Rp1a2 V_{3} s^{2} + C_{12} C_{9} R_{13} R_{18} Rp1a2 V_{3} s^{2} + C_{12} C_{9} R_{16} R_{17} R_{18} V_{3} s^{2} + C_{12} C_{9} R_{16} R_{17} Rp1a2 V_{3} s^{2} + C_{12} C_{9} R_{16} R_{18} Rp1a2 V_{3} s^{2} + C_{9} R_{13} R_{17} V_{3} s + C_{9} R_{13} Rp1a2 V_{3} s + C_{9} R_{16} R_{17} V_{3} s + C_{9} R_{16} Rp1a2 V_{3} s}{C_{11} C_{12} C_{9} R_{13} R_{15} R_{17} R_{18} s^{3} + C_{11} C_{12} C_{9} R_{13} R_{15} R_{17} Rp1a2 s^{3} + C_{11} C_{12} C_{9} R_{13} R_{15} R_{18} Rp1a2 s^{3} + C_{11} C_{12} C_{9} R_{13} R_{16} R_{17} R_{18} s^{3} + C_{11} C_{12} C_{9} R_{13} R_{16} R_{17} Rp1a2 s^{3} + C_{11} C_{12} C_{9} R_{13} R_{16} R_{18} Rp1a2 s^{3} + C_{11} C_{12} C_{9} R_{13} R_{17} R_{18} Rp1a2 s^{3} + C_{11} C_{12} C_{9} R_{15} R_{16} R_{17} R_{18} s^{3} + C_{11} C_{12} C_{9} R_{15} R_{16} R_{17} Rp1a2 s^{3} + C_{11} C_{12} C_{9} R_{15} R_{16} R_{18} Rp1a2 s^{3} + C_{11} C_{12} C_{9} R_{16} R_{17} R_{18} Rp1a2 s^{3} + C_{11} C_{12} R_{15} R_{17} R_{18} s^{2} + C_{11} C_{12} R_{15} R_{17} Rp1a2 s^{2} + C_{11} C_{12} R_{15} R_{18} Rp1a2 s^{2} + C_{11} C_{12} R_{16} R_{17} R_{18} s^{2} + C_{11} C_{12} R_{16} R_{17} Rp1a2 s^{2} + C_{11} C_{12} R_{16} R_{18} Rp1a2 s^{2} + C_{11} C_{12} R_{17} R_{18} Rp1a2 s^{2} + C_{11} C_{9} R_{13} R_{15} R_{17} s^{2} + C_{11} C_{9} R_{13} R_{15} Rp1a2 s^{2} + C_{11} C_{9} R_{13} R_{16} R_{17} s^{2} + C_{11} C_{9} R_{13} R_{16} Rp1a2 s^{2} + C_{11} C_{9} R_{13} R_{17} Rp1a2 s^{2} + C_{11} C_{9} R_{15} R_{16} R_{17} s^{2} + C_{11} C_{9} R_{15} R_{16} Rp1a2 s^{2} + C_{11} C_{9} R_{16} R_{17} Rp1a2 s^{2} + C_{11} R_{15} R_{17} s + C_{11} R_{15} Rp1a2 s + C_{11} R_{16} R_{17} s + C_{11} R_{16} Rp1a2 s + C_{11} R_{17} Rp1a2 s + C_{12} C_{9} R_{13} R_{17} R_{18} s^{2} + C_{12} C_{9} R_{13} R_{17} Rp1a2 s^{2} + C_{12} C_{9} R_{13} R_{18} Rp1a2 s^{2} + C_{12} C_{9} R_{16} R_{17} R_{18} s^{2} + C_{12} C_{9} R_{16} R_{17} Rp1a2 s^{2} + C_{12} C_{9} R_{16} R_{18} Rp1a2 s^{2} + C_{12} R_{17} R_{18} s + C_{12} R_{17} Rp1a2 s + C_{12} R_{18} Rp1a2 s + C_{9} R_{13} R_{17} s + C_{9} R_{13} Rp1a2 s + C_{9} R_{16} R_{17} s + C_{9} R_{16} Rp1a2 s + R_{17} + Rp1a2}\)
\(v_{4} = \frac{C_{11} C_{12} C_{9} R_{15} R_{16} R_{17} R_{18} V_{3} s^{3} + C_{11} C_{12} C_{9} R_{15} R_{16} R_{17} Rp1a2 V_{3} s^{3} + C_{11} C_{12} C_{9} R_{15} R_{16} R_{18} Rp1a2 V_{3} s^{3} + C_{11} C_{12} C_{9} R_{16} R_{17} R_{18} Rp1a2 V_{3} s^{3} + C_{11} C_{9} R_{15} R_{16} R_{17} V_{3} s^{2} + C_{11} C_{9} R_{15} R_{16} Rp1a2 V_{3} s^{2} + C_{11} C_{9} R_{16} R_{17} Rp1a2 V_{3} s^{2} + C_{12} C_{9} R_{16} R_{17} R_{18} V_{3} s^{2} + C_{12} C_{9} R_{16} R_{17} Rp1a2 V_{3} s^{2} + C_{12} C_{9} R_{16} R_{18} Rp1a2 V_{3} s^{2} + C_{9} R_{16} R_{17} V_{3} s + C_{9} R_{16} Rp1a2 V_{3} s}{C_{11} C_{12} C_{9} R_{13} R_{15} R_{17} R_{18} s^{3} + C_{11} C_{12} C_{9} R_{13} R_{15} R_{17} Rp1a2 s^{3} + C_{11} C_{12} C_{9} R_{13} R_{15} R_{18} Rp1a2 s^{3} + C_{11} C_{12} C_{9} R_{13} R_{16} R_{17} R_{18} s^{3} + C_{11} C_{12} C_{9} R_{13} R_{16} R_{17} Rp1a2 s^{3} + C_{11} C_{12} C_{9} R_{13} R_{16} R_{18} Rp1a2 s^{3} + C_{11} C_{12} C_{9} R_{13} R_{17} R_{18} Rp1a2 s^{3} + C_{11} C_{12} C_{9} R_{15} R_{16} R_{17} R_{18} s^{3} + C_{11} C_{12} C_{9} R_{15} R_{16} R_{17} Rp1a2 s^{3} + C_{11} C_{12} C_{9} R_{15} R_{16} R_{18} Rp1a2 s^{3} + C_{11} C_{12} C_{9} R_{16} R_{17} R_{18} Rp1a2 s^{3} + C_{11} C_{12} R_{15} R_{17} R_{18} s^{2} + C_{11} C_{12} R_{15} R_{17} Rp1a2 s^{2} + C_{11} C_{12} R_{15} R_{18} Rp1a2 s^{2} + C_{11} C_{12} R_{16} R_{17} R_{18} s^{2} + C_{11} C_{12} R_{16} R_{17} Rp1a2 s^{2} + C_{11} C_{12} R_{16} R_{18} Rp1a2 s^{2} + C_{11} C_{12} R_{17} R_{18} Rp1a2 s^{2} + C_{11} C_{9} R_{13} R_{15} R_{17} s^{2} + C_{11} C_{9} R_{13} R_{15} Rp1a2 s^{2} + C_{11} C_{9} R_{13} R_{16} R_{17} s^{2} + C_{11} C_{9} R_{13} R_{16} Rp1a2 s^{2} + C_{11} C_{9} R_{13} R_{17} Rp1a2 s^{2} + C_{11} C_{9} R_{15} R_{16} R_{17} s^{2} + C_{11} C_{9} R_{15} R_{16} Rp1a2 s^{2} + C_{11} C_{9} R_{16} R_{17} Rp1a2 s^{2} + C_{11} R_{15} R_{17} s + C_{11} R_{15} Rp1a2 s + C_{11} R_{16} R_{17} s + C_{11} R_{16} Rp1a2 s + C_{11} R_{17} Rp1a2 s + C_{12} C_{9} R_{13} R_{17} R_{18} s^{2} + C_{12} C_{9} R_{13} R_{17} Rp1a2 s^{2} + C_{12} C_{9} R_{13} R_{18} Rp1a2 s^{2} + C_{12} C_{9} R_{16} R_{17} R_{18} s^{2} + C_{12} C_{9} R_{16} R_{17} Rp1a2 s^{2} + C_{12} C_{9} R_{16} R_{18} Rp1a2 s^{2} + C_{12} R_{17} R_{18} s + C_{12} R_{17} Rp1a2 s + C_{12} R_{18} Rp1a2 s + C_{9} R_{13} R_{17} s + C_{9} R_{13} Rp1a2 s + C_{9} R_{16} R_{17} s + C_{9} R_{16} Rp1a2 s + R_{17} + Rp1a2}\)
\(v_{5} = 0\)
\(v_{6} = \frac{C_{11} C_{12} C_{9} R_{16} R_{17} R_{18} Rp1a2 V_{3} s^{3} + C_{11} C_{9} R_{16} R_{17} Rp1a2 V_{3} s^{2}}{C_{11} C_{12} C_{9} R_{13} R_{15} R_{17} R_{18} s^{3} + C_{11} C_{12} C_{9} R_{13} R_{15} R_{17} Rp1a2 s^{3} + C_{11} C_{12} C_{9} R_{13} R_{15} R_{18} Rp1a2 s^{3} + C_{11} C_{12} C_{9} R_{13} R_{16} R_{17} R_{18} s^{3} + C_{11} C_{12} C_{9} R_{13} R_{16} R_{17} Rp1a2 s^{3} + C_{11} C_{12} C_{9} R_{13} R_{16} R_{18} Rp1a2 s^{3} + C_{11} C_{12} C_{9} R_{13} R_{17} R_{18} Rp1a2 s^{3} + C_{11} C_{12} C_{9} R_{15} R_{16} R_{17} R_{18} s^{3} + C_{11} C_{12} C_{9} R_{15} R_{16} R_{17} Rp1a2 s^{3} + C_{11} C_{12} C_{9} R_{15} R_{16} R_{18} Rp1a2 s^{3} + C_{11} C_{12} C_{9} R_{16} R_{17} R_{18} Rp1a2 s^{3} + C_{11} C_{12} R_{15} R_{17} R_{18} s^{2} + C_{11} C_{12} R_{15} R_{17} Rp1a2 s^{2} + C_{11} C_{12} R_{15} R_{18} Rp1a2 s^{2} + C_{11} C_{12} R_{16} R_{17} R_{18} s^{2} + C_{11} C_{12} R_{16} R_{17} Rp1a2 s^{2} + C_{11} C_{12} R_{16} R_{18} Rp1a2 s^{2} + C_{11} C_{12} R_{17} R_{18} Rp1a2 s^{2} + C_{11} C_{9} R_{13} R_{15} R_{17} s^{2} + C_{11} C_{9} R_{13} R_{15} Rp1a2 s^{2} + C_{11} C_{9} R_{13} R_{16} R_{17} s^{2} + C_{11} C_{9} R_{13} R_{16} Rp1a2 s^{2} + C_{11} C_{9} R_{13} R_{17} Rp1a2 s^{2} + C_{11} C_{9} R_{15} R_{16} R_{17} s^{2} + C_{11} C_{9} R_{15} R_{16} Rp1a2 s^{2} + C_{11} C_{9} R_{16} R_{17} Rp1a2 s^{2} + C_{11} R_{15} R_{17} s + C_{11} R_{15} Rp1a2 s + C_{11} R_{16} R_{17} s + C_{11} R_{16} Rp1a2 s + C_{11} R_{17} Rp1a2 s + C_{12} C_{9} R_{13} R_{17} R_{18} s^{2} + C_{12} C_{9} R_{13} R_{17} Rp1a2 s^{2} + C_{12} C_{9} R_{13} R_{18} Rp1a2 s^{2} + C_{12} C_{9} R_{16} R_{17} R_{18} s^{2} + C_{12} C_{9} R_{16} R_{17} Rp1a2 s^{2} + C_{12} C_{9} R_{16} R_{18} Rp1a2 s^{2} + C_{12} R_{17} R_{18} s + C_{12} R_{17} Rp1a2 s + C_{12} R_{18} Rp1a2 s + C_{9} R_{13} R_{17} s + C_{9} R_{13} Rp1a2 s + C_{9} R_{16} R_{17} s + C_{9} R_{16} Rp1a2 s + R_{17} + Rp1a2}\)
\(v_{7} = \frac{C_{11} C_{12} C_{9} R_{15} R_{16} R_{17} R_{18} V_{3} s^{3} + C_{11} C_{12} C_{9} R_{15} R_{16} R_{17} Rp1a2 V_{3} s^{3} + C_{11} C_{12} C_{9} R_{15} R_{16} R_{18} Rp1a2 V_{3} s^{3} + C_{11} C_{12} C_{9} R_{16} R_{17} R_{18} Rp1a2 V_{3} s^{3} + C_{11} C_{9} R_{15} R_{16} R_{17} V_{3} s^{2} + C_{11} C_{9} R_{15} R_{16} Rp1a2 V_{3} s^{2} + C_{11} C_{9} R_{16} R_{17} Rp1a2 V_{3} s^{2}}{C_{11} C_{12} C_{9} R_{13} R_{15} R_{17} R_{18} s^{3} + C_{11} C_{12} C_{9} R_{13} R_{15} R_{17} Rp1a2 s^{3} + C_{11} C_{12} C_{9} R_{13} R_{15} R_{18} Rp1a2 s^{3} + C_{11} C_{12} C_{9} R_{13} R_{16} R_{17} R_{18} s^{3} + C_{11} C_{12} C_{9} R_{13} R_{16} R_{17} Rp1a2 s^{3} + C_{11} C_{12} C_{9} R_{13} R_{16} R_{18} Rp1a2 s^{3} + C_{11} C_{12} C_{9} R_{13} R_{17} R_{18} Rp1a2 s^{3} + C_{11} C_{12} C_{9} R_{15} R_{16} R_{17} R_{18} s^{3} + C_{11} C_{12} C_{9} R_{15} R_{16} R_{17} Rp1a2 s^{3} + C_{11} C_{12} C_{9} R_{15} R_{16} R_{18} Rp1a2 s^{3} + C_{11} C_{12} C_{9} R_{16} R_{17} R_{18} Rp1a2 s^{3} + C_{11} C_{12} R_{15} R_{17} R_{18} s^{2} + C_{11} C_{12} R_{15} R_{17} Rp1a2 s^{2} + C_{11} C_{12} R_{15} R_{18} Rp1a2 s^{2} + C_{11} C_{12} R_{16} R_{17} R_{18} s^{2} + C_{11} C_{12} R_{16} R_{17} Rp1a2 s^{2} + C_{11} C_{12} R_{16} R_{18} Rp1a2 s^{2} + C_{11} C_{12} R_{17} R_{18} Rp1a2 s^{2} + C_{11} C_{9} R_{13} R_{15} R_{17} s^{2} + C_{11} C_{9} R_{13} R_{15} Rp1a2 s^{2} + C_{11} C_{9} R_{13} R_{16} R_{17} s^{2} + C_{11} C_{9} R_{13} R_{16} Rp1a2 s^{2} + C_{11} C_{9} R_{13} R_{17} Rp1a2 s^{2} + C_{11} C_{9} R_{15} R_{16} R_{17} s^{2} + C_{11} C_{9} R_{15} R_{16} Rp1a2 s^{2} + C_{11} C_{9} R_{16} R_{17} Rp1a2 s^{2} + C_{11} R_{15} R_{17} s + C_{11} R_{15} Rp1a2 s + C_{11} R_{16} R_{17} s + C_{11} R_{16} Rp1a2 s + C_{11} R_{17} Rp1a2 s + C_{12} C_{9} R_{13} R_{17} R_{18} s^{2} + C_{12} C_{9} R_{13} R_{17} Rp1a2 s^{2} + C_{12} C_{9} R_{13} R_{18} Rp1a2 s^{2} + C_{12} C_{9} R_{16} R_{17} R_{18} s^{2} + C_{12} C_{9} R_{16} R_{17} Rp1a2 s^{2} + C_{12} C_{9} R_{16} R_{18} Rp1a2 s^{2} + C_{12} R_{17} R_{18} s + C_{12} R_{17} Rp1a2 s + C_{12} R_{18} Rp1a2 s + C_{9} R_{13} R_{17} s + C_{9} R_{13} Rp1a2 s + C_{9} R_{16} R_{17} s + C_{9} R_{16} Rp1a2 s + R_{17} + Rp1a2}\)
\(v_{8} = \frac{C_{11} C_{9} R_{16} R_{17} Rp1a2 V_{3} s^{2}}{C_{11} C_{12} C_{9} R_{13} R_{15} R_{17} R_{18} s^{3} + C_{11} C_{12} C_{9} R_{13} R_{15} R_{17} Rp1a2 s^{3} + C_{11} C_{12} C_{9} R_{13} R_{15} R_{18} Rp1a2 s^{3} + C_{11} C_{12} C_{9} R_{13} R_{16} R_{17} R_{18} s^{3} + C_{11} C_{12} C_{9} R_{13} R_{16} R_{17} Rp1a2 s^{3} + C_{11} C_{12} C_{9} R_{13} R_{16} R_{18} Rp1a2 s^{3} + C_{11} C_{12} C_{9} R_{13} R_{17} R_{18} Rp1a2 s^{3} + C_{11} C_{12} C_{9} R_{15} R_{16} R_{17} R_{18} s^{3} + C_{11} C_{12} C_{9} R_{15} R_{16} R_{17} Rp1a2 s^{3} + C_{11} C_{12} C_{9} R_{15} R_{16} R_{18} Rp1a2 s^{3} + C_{11} C_{12} C_{9} R_{16} R_{17} R_{18} Rp1a2 s^{3} + C_{11} C_{12} R_{15} R_{17} R_{18} s^{2} + C_{11} C_{12} R_{15} R_{17} Rp1a2 s^{2} + C_{11} C_{12} R_{15} R_{18} Rp1a2 s^{2} + C_{11} C_{12} R_{16} R_{17} R_{18} s^{2} + C_{11} C_{12} R_{16} R_{17} Rp1a2 s^{2} + C_{11} C_{12} R_{16} R_{18} Rp1a2 s^{2} + C_{11} C_{12} R_{17} R_{18} Rp1a2 s^{2} + C_{11} C_{9} R_{13} R_{15} R_{17} s^{2} + C_{11} C_{9} R_{13} R_{15} Rp1a2 s^{2} + C_{11} C_{9} R_{13} R_{16} R_{17} s^{2} + C_{11} C_{9} R_{13} R_{16} Rp1a2 s^{2} + C_{11} C_{9} R_{13} R_{17} Rp1a2 s^{2} + C_{11} C_{9} R_{15} R_{16} R_{17} s^{2} + C_{11} C_{9} R_{15} R_{16} Rp1a2 s^{2} + C_{11} C_{9} R_{16} R_{17} Rp1a2 s^{2} + C_{11} R_{15} R_{17} s + C_{11} R_{15} Rp1a2 s + C_{11} R_{16} R_{17} s + C_{11} R_{16} Rp1a2 s + C_{11} R_{17} Rp1a2 s + C_{12} C_{9} R_{13} R_{17} R_{18} s^{2} + C_{12} C_{9} R_{13} R_{17} Rp1a2 s^{2} + C_{12} C_{9} R_{13} R_{18} Rp1a2 s^{2} + C_{12} C_{9} R_{16} R_{17} R_{18} s^{2} + C_{12} C_{9} R_{16} R_{17} Rp1a2 s^{2} + C_{12} C_{9} R_{16} R_{18} Rp1a2 s^{2} + C_{12} R_{17} R_{18} s + C_{12} R_{17} Rp1a2 s + C_{12} R_{18} Rp1a2 s + C_{9} R_{13} R_{17} s + C_{9} R_{13} Rp1a2 s + C_{9} R_{16} R_{17} s + C_{9} R_{16} Rp1a2 s + R_{17} + Rp1a2}\)
\(I_{V3} = \frac{- C_{11} C_{12} C_{9} R_{15} R_{17} R_{18} V_{3} s^{3} - C_{11} C_{12} C_{9} R_{15} R_{17} Rp1a2 V_{3} s^{3} - C_{11} C_{12} C_{9} R_{15} R_{18} Rp1a2 V_{3} s^{3} - C_{11} C_{12} C_{9} R_{16} R_{17} R_{18} V_{3} s^{3} - C_{11} C_{12} C_{9} R_{16} R_{17} Rp1a2 V_{3} s^{3} - C_{11} C_{12} C_{9} R_{16} R_{18} Rp1a2 V_{3} s^{3} - C_{11} C_{12} C_{9} R_{17} R_{18} Rp1a2 V_{3} s^{3} - C_{11} C_{9} R_{15} R_{17} V_{3} s^{2} - C_{11} C_{9} R_{15} Rp1a2 V_{3} s^{2} - C_{11} C_{9} R_{16} R_{17} V_{3} s^{2} - C_{11} C_{9} R_{16} Rp1a2 V_{3} s^{2} - C_{11} C_{9} R_{17} Rp1a2 V_{3} s^{2} - C_{12} C_{9} R_{17} R_{18} V_{3} s^{2} - C_{12} C_{9} R_{17} Rp1a2 V_{3} s^{2} - C_{12} C_{9} R_{18} Rp1a2 V_{3} s^{2} - C_{9} R_{17} V_{3} s - C_{9} Rp1a2 V_{3} s}{C_{11} C_{12} C_{9} R_{13} R_{15} R_{17} R_{18} s^{3} + C_{11} C_{12} C_{9} R_{13} R_{15} R_{17} Rp1a2 s^{3} + C_{11} C_{12} C_{9} R_{13} R_{15} R_{18} Rp1a2 s^{3} + C_{11} C_{12} C_{9} R_{13} R_{16} R_{17} R_{18} s^{3} + C_{11} C_{12} C_{9} R_{13} R_{16} R_{17} Rp1a2 s^{3} + C_{11} C_{12} C_{9} R_{13} R_{16} R_{18} Rp1a2 s^{3} + C_{11} C_{12} C_{9} R_{13} R_{17} R_{18} Rp1a2 s^{3} + C_{11} C_{12} C_{9} R_{15} R_{16} R_{17} R_{18} s^{3} + C_{11} C_{12} C_{9} R_{15} R_{16} R_{17} Rp1a2 s^{3} + C_{11} C_{12} C_{9} R_{15} R_{16} R_{18} Rp1a2 s^{3} + C_{11} C_{12} C_{9} R_{16} R_{17} R_{18} Rp1a2 s^{3} + C_{11} C_{12} R_{15} R_{17} R_{18} s^{2} + C_{11} C_{12} R_{15} R_{17} Rp1a2 s^{2} + C_{11} C_{12} R_{15} R_{18} Rp1a2 s^{2} + C_{11} C_{12} R_{16} R_{17} R_{18} s^{2} + C_{11} C_{12} R_{16} R_{17} Rp1a2 s^{2} + C_{11} C_{12} R_{16} R_{18} Rp1a2 s^{2} + C_{11} C_{12} R_{17} R_{18} Rp1a2 s^{2} + C_{11} C_{9} R_{13} R_{15} R_{17} s^{2} + C_{11} C_{9} R_{13} R_{15} Rp1a2 s^{2} + C_{11} C_{9} R_{13} R_{16} R_{17} s^{2} + C_{11} C_{9} R_{13} R_{16} Rp1a2 s^{2} + C_{11} C_{9} R_{13} R_{17} Rp1a2 s^{2} + C_{11} C_{9} R_{15} R_{16} R_{17} s^{2} + C_{11} C_{9} R_{15} R_{16} Rp1a2 s^{2} + C_{11} C_{9} R_{16} R_{17} Rp1a2 s^{2} + C_{11} R_{15} R_{17} s + C_{11} R_{15} Rp1a2 s + C_{11} R_{16} R_{17} s + C_{11} R_{16} Rp1a2 s + C_{11} R_{17} Rp1a2 s + C_{12} C_{9} R_{13} R_{17} R_{18} s^{2} + C_{12} C_{9} R_{13} R_{17} Rp1a2 s^{2} + C_{12} C_{9} R_{13} R_{18} Rp1a2 s^{2} + C_{12} C_{9} R_{16} R_{17} R_{18} s^{2} + C_{12} C_{9} R_{16} R_{17} Rp1a2 s^{2} + C_{12} C_{9} R_{16} R_{18} Rp1a2 s^{2} + C_{12} R_{17} R_{18} s + C_{12} R_{17} Rp1a2 s + C_{12} R_{18} Rp1a2 s + C_{9} R_{13} R_{17} s + C_{9} R_{13} Rp1a2 s + C_{9} R_{16} R_{17} s + C_{9} R_{16} Rp1a2 s + R_{17} + Rp1a2}\)
\(I_{O2a} = \frac{C_{11} C_{12} C_{9} R_{15} R_{17} R_{18} V_{3} s^{3} + C_{11} C_{12} C_{9} R_{15} R_{17} Rp1a2 V_{3} s^{3} + C_{11} C_{12} C_{9} R_{15} R_{18} Rp1a2 V_{3} s^{3} + C_{11} C_{12} C_{9} R_{16} R_{17} Rp1a2 V_{3} s^{3} + C_{11} C_{12} C_{9} R_{16} R_{18} Rp1a2 V_{3} s^{3} + C_{11} C_{12} C_{9} R_{17} R_{18} Rp1a2 V_{3} s^{3} + C_{11} C_{9} R_{15} R_{17} V_{3} s^{2} + C_{11} C_{9} R_{15} Rp1a2 V_{3} s^{2} + C_{11} C_{9} R_{16} Rp1a2 V_{3} s^{2} + C_{11} C_{9} R_{17} Rp1a2 V_{3} s^{2} + C_{12} C_{9} R_{17} R_{18} V_{3} s^{2} + C_{12} C_{9} R_{17} Rp1a2 V_{3} s^{2} + C_{12} C_{9} R_{18} Rp1a2 V_{3} s^{2} + C_{9} R_{17} V_{3} s + C_{9} Rp1a2 V_{3} s}{C_{11} C_{12} C_{9} R_{13} R_{15} R_{17} R_{18} s^{3} + C_{11} C_{12} C_{9} R_{13} R_{15} R_{17} Rp1a2 s^{3} + C_{11} C_{12} C_{9} R_{13} R_{15} R_{18} Rp1a2 s^{3} + C_{11} C_{12} C_{9} R_{13} R_{16} R_{17} R_{18} s^{3} + C_{11} C_{12} C_{9} R_{13} R_{16} R_{17} Rp1a2 s^{3} + C_{11} C_{12} C_{9} R_{13} R_{16} R_{18} Rp1a2 s^{3} + C_{11} C_{12} C_{9} R_{13} R_{17} R_{18} Rp1a2 s^{3} + C_{11} C_{12} C_{9} R_{15} R_{16} R_{17} R_{18} s^{3} + C_{11} C_{12} C_{9} R_{15} R_{16} R_{17} Rp1a2 s^{3} + C_{11} C_{12} C_{9} R_{15} R_{16} R_{18} Rp1a2 s^{3} + C_{11} C_{12} C_{9} R_{16} R_{17} R_{18} Rp1a2 s^{3} + C_{11} C_{12} R_{15} R_{17} R_{18} s^{2} + C_{11} C_{12} R_{15} R_{17} Rp1a2 s^{2} + C_{11} C_{12} R_{15} R_{18} Rp1a2 s^{2} + C_{11} C_{12} R_{16} R_{17} R_{18} s^{2} + C_{11} C_{12} R_{16} R_{17} Rp1a2 s^{2} + C_{11} C_{12} R_{16} R_{18} Rp1a2 s^{2} + C_{11} C_{12} R_{17} R_{18} Rp1a2 s^{2} + C_{11} C_{9} R_{13} R_{15} R_{17} s^{2} + C_{11} C_{9} R_{13} R_{15} Rp1a2 s^{2} + C_{11} C_{9} R_{13} R_{16} R_{17} s^{2} + C_{11} C_{9} R_{13} R_{16} Rp1a2 s^{2} + C_{11} C_{9} R_{13} R_{17} Rp1a2 s^{2} + C_{11} C_{9} R_{15} R_{16} R_{17} s^{2} + C_{11} C_{9} R_{15} R_{16} Rp1a2 s^{2} + C_{11} C_{9} R_{16} R_{17} Rp1a2 s^{2} + C_{11} R_{15} R_{17} s + C_{11} R_{15} Rp1a2 s + C_{11} R_{16} R_{17} s + C_{11} R_{16} Rp1a2 s + C_{11} R_{17} Rp1a2 s + C_{12} C_{9} R_{13} R_{17} R_{18} s^{2} + C_{12} C_{9} R_{13} R_{17} Rp1a2 s^{2} + C_{12} C_{9} R_{13} R_{18} Rp1a2 s^{2} + C_{12} C_{9} R_{16} R_{17} R_{18} s^{2} + C_{12} C_{9} R_{16} R_{17} Rp1a2 s^{2} + C_{12} C_{9} R_{16} R_{18} Rp1a2 s^{2} + C_{12} R_{17} R_{18} s + C_{12} R_{17} Rp1a2 s + C_{12} R_{18} Rp1a2 s + C_{9} R_{13} R_{17} s + C_{9} R_{13} Rp1a2 s + C_{9} R_{16} R_{17} s + C_{9} R_{16} Rp1a2 s + R_{17} + Rp1a2}\)
Explanation of operation by looking at the pole and zero locations.
= cancel(U_sym[v2]/U_sym[v1])
H_sym H_sym
\(\displaystyle \frac{- C_{11} C_{12} C_{9} R_{15} R_{17} R_{18} R_{20} s^{3} - C_{11} C_{12} C_{9} R_{15} R_{17} R_{20} Rp1a2 s^{3} - C_{11} C_{12} C_{9} R_{15} R_{18} R_{20} Rp1a2 s^{3} - C_{11} C_{12} C_{9} R_{16} R_{17} R_{20} Rp1a2 s^{3} - C_{11} C_{12} C_{9} R_{16} R_{18} R_{20} Rp1a2 s^{3} - C_{11} C_{12} C_{9} R_{17} R_{18} R_{20} Rp1a2 s^{3} - C_{11} C_{9} R_{15} R_{17} R_{20} s^{2} - C_{11} C_{9} R_{15} R_{20} Rp1a2 s^{2} - C_{11} C_{9} R_{16} R_{20} Rp1a2 s^{2} - C_{11} C_{9} R_{17} R_{20} Rp1a2 s^{2} - C_{12} C_{9} R_{17} R_{18} R_{20} s^{2} - C_{12} C_{9} R_{17} R_{20} Rp1a2 s^{2} - C_{12} C_{9} R_{18} R_{20} Rp1a2 s^{2} - C_{9} R_{17} R_{20} s - C_{9} R_{20} Rp1a2 s}{C_{11} C_{12} C_{13} C_{9} R_{13} R_{15} R_{17} R_{18} R_{20} s^{4} + C_{11} C_{12} C_{13} C_{9} R_{13} R_{15} R_{17} R_{20} Rp1a2 s^{4} + C_{11} C_{12} C_{13} C_{9} R_{13} R_{15} R_{18} R_{20} Rp1a2 s^{4} + C_{11} C_{12} C_{13} C_{9} R_{13} R_{16} R_{17} R_{18} R_{20} s^{4} + C_{11} C_{12} C_{13} C_{9} R_{13} R_{16} R_{17} R_{20} Rp1a2 s^{4} + C_{11} C_{12} C_{13} C_{9} R_{13} R_{16} R_{18} R_{20} Rp1a2 s^{4} + C_{11} C_{12} C_{13} C_{9} R_{13} R_{17} R_{18} R_{20} Rp1a2 s^{4} + C_{11} C_{12} C_{13} C_{9} R_{15} R_{16} R_{17} R_{18} R_{20} s^{4} + C_{11} C_{12} C_{13} C_{9} R_{15} R_{16} R_{17} R_{20} Rp1a2 s^{4} + C_{11} C_{12} C_{13} C_{9} R_{15} R_{16} R_{18} R_{20} Rp1a2 s^{4} + C_{11} C_{12} C_{13} C_{9} R_{16} R_{17} R_{18} R_{20} Rp1a2 s^{4} + C_{11} C_{12} C_{13} R_{15} R_{17} R_{18} R_{20} s^{3} + C_{11} C_{12} C_{13} R_{15} R_{17} R_{20} Rp1a2 s^{3} + C_{11} C_{12} C_{13} R_{15} R_{18} R_{20} Rp1a2 s^{3} + C_{11} C_{12} C_{13} R_{16} R_{17} R_{18} R_{20} s^{3} + C_{11} C_{12} C_{13} R_{16} R_{17} R_{20} Rp1a2 s^{3} + C_{11} C_{12} C_{13} R_{16} R_{18} R_{20} Rp1a2 s^{3} + C_{11} C_{12} C_{13} R_{17} R_{18} R_{20} Rp1a2 s^{3} + C_{11} C_{12} C_{9} R_{13} R_{15} R_{17} R_{18} s^{3} + C_{11} C_{12} C_{9} R_{13} R_{15} R_{17} Rp1a2 s^{3} + C_{11} C_{12} C_{9} R_{13} R_{15} R_{18} Rp1a2 s^{3} + C_{11} C_{12} C_{9} R_{13} R_{16} R_{17} R_{18} s^{3} + C_{11} C_{12} C_{9} R_{13} R_{16} R_{17} Rp1a2 s^{3} + C_{11} C_{12} C_{9} R_{13} R_{16} R_{18} Rp1a2 s^{3} + C_{11} C_{12} C_{9} R_{13} R_{17} R_{18} Rp1a2 s^{3} + C_{11} C_{12} C_{9} R_{15} R_{16} R_{17} R_{18} s^{3} + C_{11} C_{12} C_{9} R_{15} R_{16} R_{17} Rp1a2 s^{3} + C_{11} C_{12} C_{9} R_{15} R_{16} R_{18} Rp1a2 s^{3} + C_{11} C_{12} C_{9} R_{16} R_{17} R_{18} Rp1a2 s^{3} + C_{11} C_{12} R_{15} R_{17} R_{18} s^{2} + C_{11} C_{12} R_{15} R_{17} Rp1a2 s^{2} + C_{11} C_{12} R_{15} R_{18} Rp1a2 s^{2} + C_{11} C_{12} R_{16} R_{17} R_{18} s^{2} + C_{11} C_{12} R_{16} R_{17} Rp1a2 s^{2} + C_{11} C_{12} R_{16} R_{18} Rp1a2 s^{2} + C_{11} C_{12} R_{17} R_{18} Rp1a2 s^{2} + C_{11} C_{13} C_{9} R_{13} R_{15} R_{17} R_{20} s^{3} + C_{11} C_{13} C_{9} R_{13} R_{15} R_{20} Rp1a2 s^{3} + C_{11} C_{13} C_{9} R_{13} R_{16} R_{17} R_{20} s^{3} + C_{11} C_{13} C_{9} R_{13} R_{16} R_{20} Rp1a2 s^{3} + C_{11} C_{13} C_{9} R_{13} R_{17} R_{20} Rp1a2 s^{3} + C_{11} C_{13} C_{9} R_{15} R_{16} R_{17} R_{20} s^{3} + C_{11} C_{13} C_{9} R_{15} R_{16} R_{20} Rp1a2 s^{3} + C_{11} C_{13} C_{9} R_{16} R_{17} R_{20} Rp1a2 s^{3} + C_{11} C_{13} R_{15} R_{17} R_{20} s^{2} + C_{11} C_{13} R_{15} R_{20} Rp1a2 s^{2} + C_{11} C_{13} R_{16} R_{17} R_{20} s^{2} + C_{11} C_{13} R_{16} R_{20} Rp1a2 s^{2} + C_{11} C_{13} R_{17} R_{20} Rp1a2 s^{2} + C_{11} C_{9} R_{13} R_{15} R_{17} s^{2} + C_{11} C_{9} R_{13} R_{15} Rp1a2 s^{2} + C_{11} C_{9} R_{13} R_{16} R_{17} s^{2} + C_{11} C_{9} R_{13} R_{16} Rp1a2 s^{2} + C_{11} C_{9} R_{13} R_{17} Rp1a2 s^{2} + C_{11} C_{9} R_{15} R_{16} R_{17} s^{2} + C_{11} C_{9} R_{15} R_{16} Rp1a2 s^{2} + C_{11} C_{9} R_{16} R_{17} Rp1a2 s^{2} + C_{11} R_{15} R_{17} s + C_{11} R_{15} Rp1a2 s + C_{11} R_{16} R_{17} s + C_{11} R_{16} Rp1a2 s + C_{11} R_{17} Rp1a2 s + C_{12} C_{13} C_{9} R_{13} R_{17} R_{18} R_{20} s^{3} + C_{12} C_{13} C_{9} R_{13} R_{17} R_{20} Rp1a2 s^{3} + C_{12} C_{13} C_{9} R_{13} R_{18} R_{20} Rp1a2 s^{3} + C_{12} C_{13} C_{9} R_{16} R_{17} R_{18} R_{20} s^{3} + C_{12} C_{13} C_{9} R_{16} R_{17} R_{20} Rp1a2 s^{3} + C_{12} C_{13} C_{9} R_{16} R_{18} R_{20} Rp1a2 s^{3} + C_{12} C_{13} R_{17} R_{18} R_{20} s^{2} + C_{12} C_{13} R_{17} R_{20} Rp1a2 s^{2} + C_{12} C_{13} R_{18} R_{20} Rp1a2 s^{2} + C_{12} C_{9} R_{13} R_{17} R_{18} s^{2} + C_{12} C_{9} R_{13} R_{17} Rp1a2 s^{2} + C_{12} C_{9} R_{13} R_{18} Rp1a2 s^{2} + C_{12} C_{9} R_{16} R_{17} R_{18} s^{2} + C_{12} C_{9} R_{16} R_{17} Rp1a2 s^{2} + C_{12} C_{9} R_{16} R_{18} Rp1a2 s^{2} + C_{12} R_{17} R_{18} s + C_{12} R_{17} Rp1a2 s + C_{12} R_{18} Rp1a2 s + C_{13} C_{9} R_{13} R_{17} R_{20} s^{2} + C_{13} C_{9} R_{13} R_{20} Rp1a2 s^{2} + C_{13} C_{9} R_{16} R_{17} R_{20} s^{2} + C_{13} C_{9} R_{16} R_{20} Rp1a2 s^{2} + C_{13} R_{17} R_{20} s + C_{13} R_{20} Rp1a2 s + C_{9} R_{13} R_{17} s + C_{9} R_{13} Rp1a2 s + C_{9} R_{16} R_{17} s + C_{9} R_{16} Rp1a2 s + R_{17} + Rp1a2}\)
= fraction(H_sym) #returns numerator and denominator sym_num, sym_denom
sym_num.subs(element_values)
\(\displaystyle - 0.0018380788272 s^{3} - 14.3599008 s^{2} - 15092.0 s\)
sym_num
\(\displaystyle - C_{11} C_{12} C_{9} R_{15} R_{17} R_{18} R_{20} s^{3} - C_{11} C_{12} C_{9} R_{15} R_{17} R_{20} Rp1a2 s^{3} - C_{11} C_{12} C_{9} R_{15} R_{18} R_{20} Rp1a2 s^{3} - C_{11} C_{12} C_{9} R_{16} R_{17} R_{20} Rp1a2 s^{3} - C_{11} C_{12} C_{9} R_{16} R_{18} R_{20} Rp1a2 s^{3} - C_{11} C_{12} C_{9} R_{17} R_{18} R_{20} Rp1a2 s^{3} - C_{11} C_{9} R_{15} R_{17} R_{20} s^{2} - C_{11} C_{9} R_{15} R_{20} Rp1a2 s^{2} - C_{11} C_{9} R_{16} R_{20} Rp1a2 s^{2} - C_{11} C_{9} R_{17} R_{20} Rp1a2 s^{2} - C_{12} C_{9} R_{17} R_{18} R_{20} s^{2} - C_{12} C_{9} R_{17} R_{20} Rp1a2 s^{2} - C_{12} C_{9} R_{18} R_{20} Rp1a2 s^{2} - C_{9} R_{17} R_{20} s - C_{9} R_{20} Rp1a2 s\)
= solve(sym_num,s) nr
len(nr)
\(\displaystyle 3\)
0].subs(element_values))/(2*np.pi) N(nr[
\(\displaystyle 0\)
0].free_symbols nr[
\(\displaystyle \left\{\right\}\)
1].subs(element_values))/(2*np.pi) N(nr[
\(\displaystyle -1044.21627794572\)
1].free_symbols nr[
\(\displaystyle \left\{C_{11}, C_{12}, R_{15}, R_{16}, R_{17}, R_{18}, Rp1a2\right\}\)
2].subs(element_values))/(2*np.pi) N(nr[
\(\displaystyle -199.173918823348\)
2].free_symbols nr[
\(\displaystyle \left\{C_{11}, C_{12}, R_{15}, R_{16}, R_{17}, R_{18}, Rp1a2\right\}\)
Try plotting the location of the zeros as a function of P1a
sym_denom.subs(element_values)
\(\displaystyle 3.1368980323296 \cdot 10^{-8} s^{4} + 0.000627495159826816 s^{3} + 2.267007349904 s^{2} + 1948.80748 s + 77000.0\)
sym_denom
\(\displaystyle C_{11} C_{12} C_{13} C_{9} R_{13} R_{15} R_{17} R_{18} R_{20} s^{4} + C_{11} C_{12} C_{13} C_{9} R_{13} R_{15} R_{17} R_{20} Rp1a2 s^{4} + C_{11} C_{12} C_{13} C_{9} R_{13} R_{15} R_{18} R_{20} Rp1a2 s^{4} + C_{11} C_{12} C_{13} C_{9} R_{13} R_{16} R_{17} R_{18} R_{20} s^{4} + C_{11} C_{12} C_{13} C_{9} R_{13} R_{16} R_{17} R_{20} Rp1a2 s^{4} + C_{11} C_{12} C_{13} C_{9} R_{13} R_{16} R_{18} R_{20} Rp1a2 s^{4} + C_{11} C_{12} C_{13} C_{9} R_{13} R_{17} R_{18} R_{20} Rp1a2 s^{4} + C_{11} C_{12} C_{13} C_{9} R_{15} R_{16} R_{17} R_{18} R_{20} s^{4} + C_{11} C_{12} C_{13} C_{9} R_{15} R_{16} R_{17} R_{20} Rp1a2 s^{4} + C_{11} C_{12} C_{13} C_{9} R_{15} R_{16} R_{18} R_{20} Rp1a2 s^{4} + C_{11} C_{12} C_{13} C_{9} R_{16} R_{17} R_{18} R_{20} Rp1a2 s^{4} + C_{11} C_{12} C_{13} R_{15} R_{17} R_{18} R_{20} s^{3} + C_{11} C_{12} C_{13} R_{15} R_{17} R_{20} Rp1a2 s^{3} + C_{11} C_{12} C_{13} R_{15} R_{18} R_{20} Rp1a2 s^{3} + C_{11} C_{12} C_{13} R_{16} R_{17} R_{18} R_{20} s^{3} + C_{11} C_{12} C_{13} R_{16} R_{17} R_{20} Rp1a2 s^{3} + C_{11} C_{12} C_{13} R_{16} R_{18} R_{20} Rp1a2 s^{3} + C_{11} C_{12} C_{13} R_{17} R_{18} R_{20} Rp1a2 s^{3} + C_{11} C_{12} C_{9} R_{13} R_{15} R_{17} R_{18} s^{3} + C_{11} C_{12} C_{9} R_{13} R_{15} R_{17} Rp1a2 s^{3} + C_{11} C_{12} C_{9} R_{13} R_{15} R_{18} Rp1a2 s^{3} + C_{11} C_{12} C_{9} R_{13} R_{16} R_{17} R_{18} s^{3} + C_{11} C_{12} C_{9} R_{13} R_{16} R_{17} Rp1a2 s^{3} + C_{11} C_{12} C_{9} R_{13} R_{16} R_{18} Rp1a2 s^{3} + C_{11} C_{12} C_{9} R_{13} R_{17} R_{18} Rp1a2 s^{3} + C_{11} C_{12} C_{9} R_{15} R_{16} R_{17} R_{18} s^{3} + C_{11} C_{12} C_{9} R_{15} R_{16} R_{17} Rp1a2 s^{3} + C_{11} C_{12} C_{9} R_{15} R_{16} R_{18} Rp1a2 s^{3} + C_{11} C_{12} C_{9} R_{16} R_{17} R_{18} Rp1a2 s^{3} + C_{11} C_{12} R_{15} R_{17} R_{18} s^{2} + C_{11} C_{12} R_{15} R_{17} Rp1a2 s^{2} + C_{11} C_{12} R_{15} R_{18} Rp1a2 s^{2} + C_{11} C_{12} R_{16} R_{17} R_{18} s^{2} + C_{11} C_{12} R_{16} R_{17} Rp1a2 s^{2} + C_{11} C_{12} R_{16} R_{18} Rp1a2 s^{2} + C_{11} C_{12} R_{17} R_{18} Rp1a2 s^{2} + C_{11} C_{13} C_{9} R_{13} R_{15} R_{17} R_{20} s^{3} + C_{11} C_{13} C_{9} R_{13} R_{15} R_{20} Rp1a2 s^{3} + C_{11} C_{13} C_{9} R_{13} R_{16} R_{17} R_{20} s^{3} + C_{11} C_{13} C_{9} R_{13} R_{16} R_{20} Rp1a2 s^{3} + C_{11} C_{13} C_{9} R_{13} R_{17} R_{20} Rp1a2 s^{3} + C_{11} C_{13} C_{9} R_{15} R_{16} R_{17} R_{20} s^{3} + C_{11} C_{13} C_{9} R_{15} R_{16} R_{20} Rp1a2 s^{3} + C_{11} C_{13} C_{9} R_{16} R_{17} R_{20} Rp1a2 s^{3} + C_{11} C_{13} R_{15} R_{17} R_{20} s^{2} + C_{11} C_{13} R_{15} R_{20} Rp1a2 s^{2} + C_{11} C_{13} R_{16} R_{17} R_{20} s^{2} + C_{11} C_{13} R_{16} R_{20} Rp1a2 s^{2} + C_{11} C_{13} R_{17} R_{20} Rp1a2 s^{2} + C_{11} C_{9} R_{13} R_{15} R_{17} s^{2} + C_{11} C_{9} R_{13} R_{15} Rp1a2 s^{2} + C_{11} C_{9} R_{13} R_{16} R_{17} s^{2} + C_{11} C_{9} R_{13} R_{16} Rp1a2 s^{2} + C_{11} C_{9} R_{13} R_{17} Rp1a2 s^{2} + C_{11} C_{9} R_{15} R_{16} R_{17} s^{2} + C_{11} C_{9} R_{15} R_{16} Rp1a2 s^{2} + C_{11} C_{9} R_{16} R_{17} Rp1a2 s^{2} + C_{11} R_{15} R_{17} s + C_{11} R_{15} Rp1a2 s + C_{11} R_{16} R_{17} s + C_{11} R_{16} Rp1a2 s + C_{11} R_{17} Rp1a2 s + C_{12} C_{13} C_{9} R_{13} R_{17} R_{18} R_{20} s^{3} + C_{12} C_{13} C_{9} R_{13} R_{17} R_{20} Rp1a2 s^{3} + C_{12} C_{13} C_{9} R_{13} R_{18} R_{20} Rp1a2 s^{3} + C_{12} C_{13} C_{9} R_{16} R_{17} R_{18} R_{20} s^{3} + C_{12} C_{13} C_{9} R_{16} R_{17} R_{20} Rp1a2 s^{3} + C_{12} C_{13} C_{9} R_{16} R_{18} R_{20} Rp1a2 s^{3} + C_{12} C_{13} R_{17} R_{18} R_{20} s^{2} + C_{12} C_{13} R_{17} R_{20} Rp1a2 s^{2} + C_{12} C_{13} R_{18} R_{20} Rp1a2 s^{2} + C_{12} C_{9} R_{13} R_{17} R_{18} s^{2} + C_{12} C_{9} R_{13} R_{17} Rp1a2 s^{2} + C_{12} C_{9} R_{13} R_{18} Rp1a2 s^{2} + C_{12} C_{9} R_{16} R_{17} R_{18} s^{2} + C_{12} C_{9} R_{16} R_{17} Rp1a2 s^{2} + C_{12} C_{9} R_{16} R_{18} Rp1a2 s^{2} + C_{12} R_{17} R_{18} s + C_{12} R_{17} Rp1a2 s + C_{12} R_{18} Rp1a2 s + C_{13} C_{9} R_{13} R_{17} R_{20} s^{2} + C_{13} C_{9} R_{13} R_{20} Rp1a2 s^{2} + C_{13} C_{9} R_{16} R_{17} R_{20} s^{2} + C_{13} C_{9} R_{16} R_{20} Rp1a2 s^{2} + C_{13} R_{17} R_{20} s + C_{13} R_{20} Rp1a2 s + C_{9} R_{13} R_{17} s + C_{9} R_{13} Rp1a2 s + C_{9} R_{16} R_{17} s + C_{9} R_{16} Rp1a2 s + R_{17} + Rp1a2\)
= solve(sym_denom,s) dr
len(dr)
\(\displaystyle 4\)
0].subs(element_values))/(2*np.pi) N(dr[
\(\displaystyle -495.131107179864\)
0].free_symbols dr[
\(\displaystyle \left\{C_{13}, R_{20}\right\}\)
1].subs(element_values))/(2*np.pi) N(dr[
\(\displaystyle -2488.36991124334 + 5.79794135604776 \cdot 10^{-14} i\)
1].free_symbols dr[
\(\displaystyle \left\{C_{11}, C_{12}, C_{9}, R_{13}, R_{15}, R_{16}, R_{17}, R_{18}, Rp1a2\right\}\)
2].subs(element_values))/(2*np.pi) N(dr[
\(\displaystyle -193.580625369937 - 7.69570544676559 \cdot 10^{-13} i\)
2].free_symbols dr[
\(\displaystyle \left\{C_{11}, C_{12}, C_{9}, R_{13}, R_{15}, R_{16}, R_{17}, R_{18}, Rp1a2\right\}\)
3].subs(element_values))/(2*np.pi) N(dr[
\(\displaystyle -6.60349430838314 + 7.11587265858656 \cdot 10^{-13} i\)
3].free_symbols dr[
\(\displaystyle \left\{C_{11}, C_{12}, C_{9}, R_{13}, R_{15}, R_{16}, R_{17}, R_{18}, Rp1a2\right\}\)
= NE_sym.subs(element_values) NE
Display the equations with component values.
= ''
temp for i in range(shape(NE.lhs)[0]):
+= '${:s} = {:s}$<br>'.format(latex(NE.rhs[i]),latex(NE.lhs[i]))
temp
Markdown(temp)
\(0 = I_{V3} + 5.0 \cdot 10^{-7} s v_{1} - 5.0 \cdot 10^{-7} s v_{3}\)
\(0 = I_{O2a} + v_{2} \cdot \left(8.2 \cdot 10^{-10} s + 2.55102040816327 \cdot 10^{-6}\right) + v_{5} \left(- 8.2 \cdot 10^{-10} s - 2.55102040816327 \cdot 10^{-6}\right)\)
\(0 = - 5.0 \cdot 10^{-7} s v_{1} + v_{3} \cdot \left(5.0 \cdot 10^{-7} s + 0.001\right) - 0.001 v_{4}\)
\(0 = - 2.2 \cdot 10^{-9} s v_{7} - 0.001 v_{3} + v_{4} \cdot \left(2.2 \cdot 10^{-9} s + 0.00102127659574468\right) - 2.12765957446809 \cdot 10^{-5} v_{5}\)
\(0 = - 2.7 \cdot 10^{-8} s v_{8} + v_{2} \left(- 8.2 \cdot 10^{-10} s - 2.55102040816327 \cdot 10^{-6}\right) - 2.12765957446809 \cdot 10^{-5} v_{4} + v_{5} \cdot \left(2.782 \cdot 10^{-8} s + 6.08646531898812 \cdot 10^{-5}\right) - 3.7037037037037 \cdot 10^{-5} v_{6}\)
\(0 = - 3.7037037037037 \cdot 10^{-5} v_{5} + 0.000185824915824916 v_{6} - 4.54545454545455 \cdot 10^{-5} v_{7} - 8.33333333333333 \cdot 10^{-5} v_{8}\)
\(0 = - 2.2 \cdot 10^{-9} s v_{4} - 4.54545454545455 \cdot 10^{-5} v_{6} + v_{7} \cdot \left(2.2 \cdot 10^{-9} s + 4.54545454545455 \cdot 10^{-5}\right)\)
\(0 = - 2.7 \cdot 10^{-8} s v_{5} - 8.33333333333333 \cdot 10^{-5} v_{6} + v_{8} \cdot \left(2.7 \cdot 10^{-8} s + 8.33333333333333 \cdot 10^{-5}\right)\)
\(1.0 = v_{1}\)
\(0 = v_{5}\)
Solve for voltages and currents and display the results.
= solve(NE,X) U
= ''
temp for i in U.keys():
+= '${:s} = {:s}$<br>'.format(latex(i),latex(U[i]))
temp
Markdown(temp)
\(v_{1} = 1.0\)
\(v_{2} = \frac{- 6.94390272606383 \cdot 10^{49} s^{3} - 5.42488999032883 \cdot 10^{53} s^{2} - 5.70146276595748 \cdot 10^{56} s}{1.18505879485372 \cdot 10^{45} s^{4} + 2.37055412773066 \cdot 10^{49} s^{3} + 8.56431089029255 \cdot 10^{52} s^{2} + 7.3622139446325 \cdot 10^{55} s + 2.90890957446798 \cdot 10^{57}}\)
\(v_{3} = \frac{6.55416622340426 \cdot 10^{40} s^{3} + 1.10026871104664 \cdot 10^{45} s^{2} + 1.24113475177305 \cdot 10^{48} s}{6.55416622340426 \cdot 10^{40} s^{3} + 1.10717453551472 \cdot 10^{45} s^{2} + 1.29221510315925 \cdot 10^{48} s + 5.17139479905418 \cdot 10^{49}}\)
\(v_{4} = \frac{6.20887500000001 \cdot 10^{40} s^{3} + 1.07472853535354 \cdot 10^{45} s^{2} + 1.21527777777778 \cdot 10^{48} s}{6.55416622340426 \cdot 10^{40} s^{3} + 1.10717453551472 \cdot 10^{45} s^{2} + 1.29221510315925 \cdot 10^{48} s + 5.17139479905418 \cdot 10^{49}}\)
\(v_{5} = 0.0\)
\(v_{6} = \frac{1.51875 \cdot 10^{40} s^{3} + 4.68749999999999 \cdot 10^{43} s^{2}}{6.55416622340426 \cdot 10^{40} s^{3} + 1.10717453551472 \cdot 10^{45} s^{2} + 1.29221510315925 \cdot 10^{48} s + 5.17139479905418 \cdot 10^{49}}\)
\(v_{7} = \frac{6.20887500000001 \cdot 10^{40} s^{3} + 1.05694444444445 \cdot 10^{44} s^{2}}{6.55416622340426 \cdot 10^{40} s^{3} + 1.10717453551472 \cdot 10^{45} s^{2} + 1.29221510315925 \cdot 10^{48} s + 5.17139479905418 \cdot 10^{49}}\)
\(v_{8} = \frac{4.68749999999999 \cdot 10^{43} s^{2}}{6.55416622340426 \cdot 10^{40} s^{3} + 1.10717453551472 \cdot 10^{45} s^{2} + 1.29221510315925 \cdot 10^{48} s + 5.17139479905418 \cdot 10^{49}}\)
\(I_{V3} = \frac{- 3.4529122340425 \cdot 10^{39} s^{3} - 2.55401756931003 \cdot 10^{43} s^{2} - 2.58569739952709 \cdot 10^{46} s}{6.55416622340426 \cdot 10^{43} s^{3} + 1.10717453551472 \cdot 10^{48} s^{2} + 1.29221510315925 \cdot 10^{51} s + 5.17139479905418 \cdot 10^{52}}\)
\(I_{O2a} = \frac{1.13369840425532 \cdot 10^{43} s^{3} + 8.85696324951646 \cdot 10^{46} s^{2} + 9.30851063829792 \cdot 10^{49} s}{2.35949984042553 \cdot 10^{47} s^{3} + 3.985828327853 \cdot 10^{51} s^{2} + 4.65197437137331 \cdot 10^{54} s + 1.86170212765951 \cdot 10^{56}}\)
Plot the frequency response of the transfer function
= U[v2]/U[v1]
H H
\(\displaystyle \frac{1.0 \left(- 6.94390272606383 \cdot 10^{49} s^{3} - 5.42488999032883 \cdot 10^{53} s^{2} - 5.70146276595748 \cdot 10^{56} s\right)}{1.18505879485372 \cdot 10^{45} s^{4} + 2.37055412773066 \cdot 10^{49} s^{3} + 8.56431089029255 \cdot 10^{52} s^{2} + 7.3622139446325 \cdot 10^{55} s + 2.90890957446798 \cdot 10^{57}}\)
= fraction(H) #returns numerator and denominator
num, denom
# convert symbolic to numpy polynomial
= np.array(Poly(num, s).all_coeffs(), dtype=float)
a = np.array(Poly(denom, s).all_coeffs(), dtype=float)
b
= np.logspace(1, 5, 2000, endpoint=False)*2*np.pi
x = signal.bode((a, b), w=x) # returns: rad/s, mag in dB, phase in deg w, mag, phase
= plt.subplots()
fig, ax1 'magnitude, dB')
ax1.set_ylabel('frequency, Hz')
ax1.set_xlabel(
/(2*np.pi), mag,'-k',label='MNA mag, dB') # MNA magnitude plot
plt.semilogx(w
='y')
ax1.tick_params(axis#ax1.set_ylim((-30,20))
plt.grid()='upper right')
plt.legend(loc
# instantiate a second y-axes that shares the same x-axis
= ax1.twinx()
ax2 = 'tab:blue'
color
/(2*np.pi), phase,':',color='b',label='MNA phase') # MNA phase plot
plt.semilogx(w='lower right')
plt.legend(loc
'phase, deg',color=color)
ax2.set_ylabel(='y', labelcolor=color)
ax2.tick_params(axis#ax2.set_ylim((-5,25))
# highlight the guitar audio band, 80 to 8kHz
80, 8e3, color='y', alpha=0.3)
plt.axvspan(
'Magnitude and phase response')
plt.title( plt.show()
= np.logspace(1, 5, 2000, endpoint=False)*2*np.pi
x_axis = ['tab:blue','tab:red','tab:green','tab:orange','k']
color_list = np.array([1,25,50,75,99])/100
gain_setting = 100e3
p1_value
= []
tf_num_coef_list = []
tf_denom_coef_list
#clean_path1_mag = np.zeros((len(gain_setting),len(x_axis)))
#color_list = ['tab:blue','tab:red','tab:green','tab:orange','k']
= plt.subplots()
fig, ax1 'magnitude, dB')
ax1.set_ylabel('frequency, Hz')
ax1.set_xlabel(
# instantiate a second y-axes that shares the same x-axis
= ax1.twinx()
ax2 = 'k'
color
'phase, deg',color=color)
ax2.set_ylabel(='y', labelcolor=color)
ax2.tick_params(axis
for i in range(len(gain_setting)):
= p1_value - gain_setting[i]*p1_value
element_values[Rp1a2] = gain_setting[i]*p1_value
element_values[Rp1b2]
#element_values[Rp1a2] = p1_value - gain_setting[i]*p1_value
#element_values[Rp1b2] = gain_setting[i]*p1_value
= NE_sym.subs(element_values)
NE = solve(NE,X)
U = U[v2]/U[v1]
H = fraction(H) #returns numerator and denominator
num, denom
# convert symbolic to numpy polynomial
= np.array(Poly(num, s).all_coeffs(), dtype=float)
a = np.array(Poly(denom, s).all_coeffs(), dtype=float)
b
tf_num_coef_list.append(a)
tf_denom_coef_list.append(b)
#x = np.logspace(1, 5, 2000, endpoint=False)*2*np.pi
= signal.bode((a, b), w=x_axis) # returns: rad/s, mag in dB, phase in deg
w, mag, phase #clean_path1_mag[i] = mag
# plot the results.
/(2*np.pi), mag,'-',color=color_list[i],label='mag: {:.0f}%'.format(gain_setting[i]*100)) # magnitude plot
ax1.semilogx(w/(2*np.pi), phase,':',color=color_list[i],label='phase: {:.0f}%'.format(gain_setting[i]*100)) # phase plot
ax2.semilogx(w
# highlight the guitar audio band, 80 to 8kHz
80, 8e3, color='y', alpha=0.3)
plt.axvspan(
='lower left')
ax1.legend(loc='lower right')
ax2.legend(loc
ax1.grid()'Magnitude and phase response')
plt.title( plt.show()
The Klon Centaur is famous for its:
Essentially, the Klon Centaur is revered for its ability to enhance your guitar’s natural voice in a subtle yet impactful way, making it a highly sought-after and legendary piece of gear.
From Google NotebookLM
The complaint in the lawsuit filed by Klon LLC and William Finnegan against Empower Tribe HQ FZE et al. was dated May 30, 2025.
It is a formal legal document filed in the United States District Court, District of Massachusetts. The complaint outlines the allegations made by the Plaintiffs, Klon LLC and William Finnegan, against the Defendants, including Empower Tribe HQ FZE and other related entities, and details the legal claims for which they are seeking relief. The document also includes specific dates, such as the filing date of May 30, 2025, at the very end where the attorneys’ signatures appear.
The complaint outlines a lawsuit filed by Klon LLC (“Klon”) and William Finnegan (“Finnegan”) against Empower Tribe HQ FZE, Empower Tribe Commercial FZE, Music Tribe Brands DK A/S, Empower Tribe Innovations UK Ltd., Empower Tribe Innovations US Inc., and John Does 1-10 (collectively, “Defendants”).
The lawsuit was filed in the United States District Court, District of Massachusetts.
Here’s a comprehensive overview:
The Klon CENTAUR® overdrive pedal holds a special and legendary status in the guitar world due to a combination of its unique sound, meticulous craftsmanship, deliberate scarcity, distinctive design, and significant cultural impact.
Here’s what makes the Klon CENTAUR® special:
In essence, the Klon CENTAUR is special because it’s not just an effects pedal; it’s a handcrafted, high-quality, sonically unique, and scarce instrument that has attained an almost mythical reputation among guitarists worldwide, defining a specific, highly sought-after transparent overdrive tone and aesthetic.
The Klon CENTAUR® overdrive pedal incorporates specially-selected germanium diodes for hard clipping. This design choice is a key component of its unique sound.
Regarding the internal workings, a significant aspect that makes the CENTAUR® pedal special is its ability to step up the voltage internally to 18 volts, which provides more headroom and puts out higher harmonic information, resulting in a harmonically rich, but clear sound. This higher voltage works in conjunction with the germanium diodes to achieve its distinctive tonal qualities.
In the context of the Counterfeit CENTAUR Pedal produced by the Defendants, the complaint states that it features “All analog circuitry with Germanium diodes for soft transitional clipping”, implying an attempt to replicate this characteristic of the original Klon. The promotional video for the counterfeit pedal also highlights that a “huge part of what makes this pedal so unique is hidden beneath the Gain control,” noting that the Gain introduces “clipping from the Germanium diodes” and blends the clean sound with the overdriven signal. This blending provides dynamic range, clarity, and natural picking response, which is where the transparent tonal quality originates.