Appendix A — SymMNA.py
The code listing below is for the Python functions that implement the MNA algorithm.
"""Symbolic modified nodal analysis
Last update: 29 Jun 2024
Description:
The modified nodal analysis provides an algorithmic method for generating systems of independent equations for linear
circuit analysis.
My code started initially by following Erik Cheever's Analysis of Resistive Circuits [1], which used Matlab code
to generate modified nodal equations. I somewhat followed his MATLAB file for resistors, capacitors, Op Amps and independent sources.
The naming of the matrices follows his convention. The preprocessor and parser code was converted from my old C code.
The use of pandas for a data frame is new and SymPy is used to do the math and the use of element
stamps are from [2].
Inductors are being addressed in the D matrix. Erik's code puts inductors into the G matrix as 1/s/L.
My code puts the inductor contribution into the D matrix and the unknown current from the inductor into
the B and C matrices. Coupled inductors also affect the D matrix, so it makes sense to allow the inductors
to be in the D matrix rather than the G matrix.
References:
1. [Analysis of Resistive Circuits](http://www.swarthmore.edu/NatSci/echeeve1/Ref/mna/MNA1.html), retrieved October 6, 2017
2. [ECE 570 Session 3](http://www2.engr.arizona.edu/~ece570/session3.pdf), Computer Aided Engineering for Integrated Circuits, retrieved November 13, 2023
References use in the debugging of the Op Amp stamp:
3. [Design of Analog Circuits Through Symbolic Analysis](https://www.researchgate.net/publication/230617925_Design_of_Analog_Circuits_through_Symbolic_Analysis) edited by Mourad Fakhfakh, Esteban Tlelo-Cuautle, Francisco V. Fernandez, retrieved June29, 2024
4. [Computer Aided Design and Design Automation](https://www.gbv.de/dms/ilmenau/toc/585302871.PDF), edited by Wai-Kai Chen, retrieved June 29, 2024
Example usage: See SMNA_func_test.py
"""
from sympy import *
import numpy as np
import pandas as pd
def get_part_values(net_df):
""" construct a dictionary of element values from the netlist dataframe: value_dict, get_part_values
Parameters
----------
net_df: pandas dataframe
the network dataframe returned by the smna function below
Returns
-------
element values: Python dictionary
the element values from the netlist
"""
# initialize variables
= []
element_value_keys = []
element_value_values
for i in range(len(net_df)):
if net_df.iloc[i]['element'][0] == 'F' or net_df.iloc[i]['element'][0] == 'E' or net_df.iloc[i]['element'][0] == 'G' or net_df.iloc[i]['element'][0] == 'H':
'element'].lower()))
element_value_keys.append(var(net_df.iloc[i]['value'])
element_value_values.append(net_df.iloc[i][else:
'element']))
element_value_keys.append(var(net_df.iloc[i]['value'])
element_value_values.append(net_df.iloc[i][
return dict(zip(element_value_keys, element_value_values))
def smna(net_list):
"""Symbolic modified nodal analysis
Parameters
----------
net_list: str
The circuit net list, needs a \n at the end of each line
Returns
-------
report: text string
The net list report.
df: pandas dataframe
circuit net list info loaded into a dataframe
df2: pandas dataframe
branches with unknown currents
A: SymPy matrix
The A matrix is (m+n) by (m+n) and is the combination of 4 smaller matrices, G, B, C, and D.
The G matrix is n by n, where n is the number of nodes. The matrix is formed by the interconnections
between the resistors, capacitors and VCCS type elements. In the original paper G is called Yr,
where Yr is a reduced form of the nodal matrix excluding the contributions due to voltage
sources, current controlling elements, etc. In Python row and columns are: G[row, column]
The B matrix is an n by m matrix with only 0, 1 and -1 elements, where n = number of nodes
and m is the number of current unknowns, i_unk. There is one column for each unknown current.
The code loop through all the branches and process elements that have stamps for the B matrix:
The C matrix is an m by n matrix with only 0, 1 and -1 elements (except for controlled sources).
The code is similar to the B matrix code, except the indices are swapped. The code loops through
all the branches and process elements that have stamps for the C matrix:
The D matrix is an m by m matrix, where m is the number of unknown currents.
X: list
The X matrix is an (n+m) by 1 vector that holds the unknown quantities (node voltages
and the currents through the independent voltage sources). The top n elements are the n node
voltages. The bottom m elements represent the currents through the m independent voltage
sources in the circuit. The V matrix is n by 1 and holds the unknown voltages. The J matrix
is m by 1 and holds the unknown currents through the voltage sources
Z: list
The Z matrix holds the independent voltage and current sources and is the combination
of 2 smaller matrices I and Ev. The Z matrix is (m+n) by 1, n is the number of nodes,
and m is the number of independent voltage sources. The I matrix is n by 1 and contains
the sum of the currents through the passive elements into the corresponding node (either
zero, or the sum of independent current sources). The Ev matrix is m by 1 and holds the
values of the independent voltage sources.
"""
# initialize variables
= 0 # number of passive elements
num_rlc = 0 # number of resistors
num_res = 0 # number of capacitors
num_cap = 0 # number of inductors
num_ind = 0 # number of independent voltage sources
num_v = 0 # number of independent current sources
num_i = 0 # number of current unknowns
i_unk = 0 # number of Op Amps
num_opamps = 0 # number of controlled sources of various types
num_vcvs = 0
num_vccs = 0
num_cccs = 0
num_ccvs = 0 # number of coupled inductors
num_cpld_ind
= net_list.splitlines()
content
= [x.strip() for x in content] #remove leading and trailing white space
content # remove empty lines
while '' in content:
''))
content.pop(content.index(
# remove comment lines, these start with a asterisk *
= [n for n in content if not n.startswith('*')]
content # remove other comment lines, these start with a semicolon ;
= [n for n in content if not n.startswith(';')]
content # remove spice directives, these start with a period, .
= [n for n in content if not n.startswith('.')]
content # converts 1st letter to upper case
#content = [x.upper() for x in content] <- this converts all to upper case
= [x.capitalize() for x in content]
content # removes extra spaces between entries
= [' '.join(x.split()) for x in content]
content
= len(content) # number of lines in the netlist
line_cnt = 0 # number of branches in the netlist
branch_cnt # check number of entries on each line, count each element type
for i in range(line_cnt):
= content[i][0]
x = len(content[i].split()) # split the line into a list of words
tk_cnt
if (x == 'R') or (x == 'L') or (x == 'C'):
if tk_cnt != 4:
raise Exception("branch {:d} not formatted correctly, {:s} ".format(i,content[i]),
"had {:d} items and should only be 4".format(tk_cnt))
+= 1
num_rlc += 1
branch_cnt if x == 'R':
+= 1
num_res if x == 'C':
+= 1
num_cap if x == 'L':
+= 1
num_ind elif x == 'V':
if tk_cnt != 4:
raise Exception("branch {:d} not formatted correctly, {:s} ".format(i,content[i]),
"had {:d} items and should only be 4".format(tk_cnt))
+= 1
num_v += 1
branch_cnt elif x == 'I':
if tk_cnt != 4:
raise Exception("branch {:d} not formatted correctly, {:s} ".format(i,content[i]),
"had {:d} items and should only be 4".format(tk_cnt))
+= 1
num_i += 1
branch_cnt elif x == 'O':
if tk_cnt != 4:
raise Exception("branch {:d} not formatted correctly, {:s} ".format(i,content[i]),
"had {:d} items and should only be 4".format(tk_cnt))
+= 1
num_opamps elif x == 'E':
if (tk_cnt != 6):
raise Exception("branch {:d} not formatted correctly, {:s} ".format(i,content[i]),
"had {:d} items and should only be 6".format(tk_cnt))
+= 1
num_vcvs += 1
branch_cnt elif x == 'G':
if (tk_cnt != 6):
raise Exception("branch {:d} not formatted correctly, {:s} ".format(i,content[i]),
"had {:d} items and should only be 6".format(tk_cnt))
+= 1
num_vccs += 1
branch_cnt elif x == 'F':
if (tk_cnt != 5):
raise Exception("branch {:d} not formatted correctly, {:s} ".format(i,content[i]),
"had {:d} items and should only be 5".format(tk_cnt))
+= 1
num_cccs += 1
branch_cnt elif x == 'H':
if (tk_cnt != 5):
raise Exception("branch {:d} not formatted correctly, {:s} ".format(i,content[i]),
"had {:d} items and should only be 5".format(tk_cnt))
+= 1
num_ccvs += 1
branch_cnt elif x == 'K':
if (tk_cnt != 4):
raise Exception("branch {:d} not formatted correctly, {:s} ".format(i,content[i]),
"had {:d} items and should only be 4".format(tk_cnt))
+= 1
num_cpld_ind else:
raise Exception("unknown element type in branch {:d}: {:s}".format(i,content[i]))
''' The parser performs the following operations.
1. puts branch elements into data frame
2. counts number of nodes
data frame labels:
- element: type of element
- p node: positive node
- n node: negative node, for a current source, the arrow point terminal, LTSpice
puts the inductor phasing dot on this terminal
- cp node: controlling positive node of branch
- cn node: controlling negative node of branch
- Vout: Op Amp output node
- value: value of element or voltage
- Vname: voltage source through which the controlling current flows. Need to
add a zero volt voltage source to the controlling branch.
- Lname1: name of coupled inductor 1
- Lname2: name of coupled inductor 2'''
# build the pandas data frame
= pd.DataFrame(columns=['element','p node','n node','cp node','cn node',
df 'Vout','value','Vname','Lname1','Lname2'])
# this data frame is for branches with unknown currents
= pd.DataFrame(columns=['element','p node','n node'])
df2
# ### Functions to load branch elements into data frame and check for gaps in node numbering
# loads voltage or current sources into branch structure
def indep_source(line_nu):
= content[line_nu].split()
tk 'element'] = tk[0]
df.loc[line_nu,'p node'] = int(tk[1])
df.loc[line_nu,'n node'] = int(tk[2])
df.loc[line_nu,'value'] = float(tk[3])
df.loc[line_nu,
# loads passive elements into branch structure
def rlc_element(line_nu):
= content[line_nu].split()
tk 'element'] = tk[0]
df.loc[line_nu,'p node'] = int(tk[1])
df.loc[line_nu,'n node'] = int(tk[2])
df.loc[line_nu,'value'] = float(tk[3])
df.loc[line_nu,
# loads multi-terminal elements into branch structure
# O - Op Amps
def opamp_sub_network(line_nu):
= content[line_nu].split()
tk 'element'] = tk[0]
df.loc[line_nu,'p node'] = int(tk[1])
df.loc[line_nu,'n node'] = int(tk[2])
df.loc[line_nu,'Vout'] = int(tk[3])
df.loc[line_nu,
# G - VCCS
def vccs_sub_network(line_nu):
= content[line_nu].split()
tk 'element'] = tk[0]
df.loc[line_nu,'p node'] = int(tk[1])
df.loc[line_nu,'n node'] = int(tk[2])
df.loc[line_nu,'cp node'] = int(tk[3])
df.loc[line_nu,'cn node'] = int(tk[4])
df.loc[line_nu,'value'] = float(tk[5])
df.loc[line_nu,
# E - VCVS
# in sympy E is the number 2.718, replacing E with Ea otherwise, sympify() errors out
def vcvs_sub_network(line_nu):
= content[line_nu].split()
tk 'element'] = tk[0].replace('E', 'Ea')
df.loc[line_nu,'p node'] = int(tk[1])
df.loc[line_nu,'n node'] = int(tk[2])
df.loc[line_nu,'cp node'] = int(tk[3])
df.loc[line_nu,'cn node'] = int(tk[4])
df.loc[line_nu,'value'] = float(tk[5])
df.loc[line_nu,
# F - CCCS
def cccs_sub_network(line_nu):
= content[line_nu].split()
tk 'element'] = tk[0]
df.loc[line_nu,'p node'] = int(tk[1])
df.loc[line_nu,'n node'] = int(tk[2])
df.loc[line_nu,'Vname'] = tk[3].capitalize()
df.loc[line_nu,'value'] = float(tk[4])
df.loc[line_nu,
# H - CCVS
def ccvs_sub_network(line_nu):
= content[line_nu].split()
tk 'element'] = tk[0]
df.loc[line_nu,'p node'] = int(tk[1])
df.loc[line_nu,'n node'] = int(tk[2])
df.loc[line_nu,'Vname'] = tk[3].capitalize()
df.loc[line_nu,'value'] = float(tk[4])
df.loc[line_nu,
# K - Coupled inductors
def cpld_ind_sub_network(line_nu):
= content[line_nu].split()
tk 'element'] = tk[0]
df.loc[line_nu,'Lname1'] = tk[1].capitalize()
df.loc[line_nu,'Lname2'] = tk[2].capitalize()
df.loc[line_nu,'value'] = float(tk[3])
df.loc[line_nu,
# function to scan df and get largest node number
def count_nodes():
# need to check that nodes are consecutive
# fill array with node numbers
= np.zeros(line_cnt+1)
p for i in range(line_cnt):
# need to skip coupled inductor 'K' statements
if df.loc[i,'element'][0] != 'K': #get 1st letter of element name
'p node'][i]] = df['p node'][i]
p[df['n node'][i]] = df['n node'][i]
p[df[
# find the largest node number
if df['n node'].max() > df['p node'].max():
= df['n node'].max()
largest else:
= df['p node'].max()
largest
= int(largest)
largest # check for unfilled elements, skip node 0
for i in range(1,largest):
if p[i] == 0:
raise Exception('nodes not in continuous order, node {:.0f} is missing'.format(p[i-1]+1))
return largest
# load branch info into data frame
for i in range(line_cnt):
= content[i][0]
x
if (x == 'R') or (x == 'L') or (x == 'C'):
rlc_element(i)elif (x == 'V') or (x == 'I'):
indep_source(i)elif x == 'O':
opamp_sub_network(i)elif x == 'E':
vcvs_sub_network(i)elif x == 'G':
vccs_sub_network(i)elif x == 'F':
cccs_sub_network(i)elif x == 'H':
ccvs_sub_network(i)elif x == 'K':
cpld_ind_sub_network(i)else:
raise Exception("unknown element type in branch {:d}, {:s}".format(i,content[i]))
'''29 Nov 2023: When the D matrix is built, independent voltage sources are processed
in the data frame order when building the D matrix. If the voltage source followed element
L, H, F, K types in the netlist, a row was inserted that put the voltage source in a different
row in relation to its position in the Ev matrix. This would cause the node attached to
the terminal of the voltage source to be zero volts.
Solution - The following block of code was added to move voltage source types to the
beginning of the net list dataframe before any calculations are performed.'''
# Check for position of voltage sources in the dataframe.
= [] # keep track of voltage source row number
source_index = [] # make a list of all other types
other_index for i in range(len(df)):
# process all the elements creating unknown currents
= df.loc[i,'element'][0] #get 1st letter of element name
x if (x == 'V'):
source_index.append(i)else:
other_index.append(i)
= df.reindex(source_index+other_index,copy=True) # reorder the data frame
df =True, inplace=True) # renumber the index
df.reset_index(drop
# count number of nodes
= count_nodes()
num_nodes
# Build df2: consists of branches with current unknowns, used for C & D matrices
# walk through data frame and find these parameters
= 0
count for i in range(len(df)):
# process all the elements creating unknown currents
= df.loc[i,'element'][0] #get 1st letter of element name
x if (x == 'L') or (x == 'V') or (x == 'O') or (x == 'E') or (x == 'H') or (x == 'F'):
'element'] = df.loc[i,'element']
df2.loc[count,'p node'] = df.loc[i,'p node']
df2.loc[count,'n node'] = df.loc[i,'n node']
df2.loc[count,+= 1
count
# print the netlist report
= 'Net list report\n'
report = report+('number of lines in netlist: {:d}\n'.format(line_cnt))
report = report+'number of branches: {:d}\n'.format(branch_cnt)
report = report+'number of nodes: {:d}\n'.format(num_nodes)
report # count the number of element types that affect the size of the B, C, D, E and J arrays
# these are current unknows
= num_v+num_opamps+num_vcvs+num_ccvs+num_cccs+num_ind
i_unk = report+'number of unknown currents: {:d}\n'.format(i_unk)
report = report+'number of RLC (passive components): {:d}\n'.format(num_rlc)
report = report+'number of resistors: {:d}\n'.format(num_res)
report = report+'number of capacitors: {:d}\n'.format(num_cap)
report = report+'number of inductors: {:d}\n'.format(num_ind)
report = report+'number of independent voltage sources: {:d}\n'.format(num_v)
report = report+'number of independent current sources: {:d}\n'.format(num_i)
report = report+'number of Op Amps: {:d}\n'.format(num_opamps)
report = report+'number of E - VCVS: {:d}\n'.format(num_vcvs)
report = report+'number of G - VCCS: {:d}\n'.format(num_vccs)
report = report+'number of F - CCCS: {:d}\n'.format(num_cccs)
report = report+'number of H - CCVS: {:d}\n'.format(num_ccvs)
report = report+'number of K - Coupled inductors: {:d}\n'.format(num_cpld_ind)
report
# initialize some symbolic matrix with zeros
# A is formed by [[G, C] [B, D]]
# Z = [I,E]
# X = [V, J]
= zeros(num_nodes,1)
V = zeros(num_nodes,1)
I = zeros(num_nodes,num_nodes) # also called Yr, the reduced nodal matrix
G = Symbol('s') # the Laplace variable
s
# count the number of element types that affect the size of the B, C, D, E and J arrays
# these are element types that have unknown currents
= num_v+num_opamps+num_vcvs+num_ccvs+num_ind+num_cccs
i_unk # if i_unk == 0, just generate empty arrays
= zeros(num_nodes,i_unk)
B = zeros(i_unk,num_nodes)
C = zeros(i_unk,i_unk)
D = zeros(i_unk,1)
Ev = zeros(i_unk,1)
J
''' The G matrix is n by n, where n is the number of nodes.
The matrix is formed by the interconnections between the resistors,
capacitors and VCCS type elements. In the original paper G is called Yr,
where Yr is a reduced form of the nodal matrix excluding the contributions
due to voltage sources, current controlling elements, etc. In Python row
and columns are: G[row, column]'''
for i in range(len(df)): # process each row in the data frame
= df.loc[i,'p node']
n1 = df.loc[i,'n node']
n2 = df.loc[i,'cp node']
cn1 = df.loc[i,'cn node']
cn2 # process all the passive elements, save conductance to temp value
= df.loc[i,'element'][0] #get 1st letter of element name
x if x == 'R':
= 1/sympify(df.loc[i,'element'])
g if x == 'C':
= s*sympify(df.loc[i,'element'])
g if x == 'G': #vccs type element
= sympify(df.loc[i,'element'].lower()) # use a symbol for gain value
g
if (x == 'R') or (x == 'C'):
# If neither side of the element is connected to ground
# then subtract it from the appropriate location in the matrix.
if (n1 != 0) and (n2 != 0):
-1,n2-1] += -g
G[n1-1,n1-1] += -g
G[n2
# If node 1 is connected to ground, add element to diagonal of matrix
if n1 != 0:
-1,n1-1] += g
G[n1
# same for for node 2
if n2 != 0:
-1,n2-1] += g
G[n2
if x == 'G': #vccs type element
# check to see if any terminal is grounded
# then stamp the matrix
if n1 != 0 and cn1 != 0:
-1,cn1-1] += g
G[n1
if n2 != 0 and cn2 != 0:
-1,cn2-1] += g
G[n2
if n1 != 0 and cn2 != 0:
-1,cn2-1] -= g
G[n1
if n2 != 0 and cn1 != 0:
-1,cn1-1] -= g
G[n2
'''The B matrix is an n by m matrix with only 0, 1 and -1 elements, where
n = number of nodes and m is the number of current unknowns, i_unk. There is
one column for each unknown current. The code loop through all the branches
and process elements that have stamps for the B matrix:
- Voltage sources (V)
- Op Amps (O)
- CCVS (H)
- CCCS (F)
- VCVS (E)
- Inductors (L)
The order of the columns is as they appear in the netlist. CCCS (F) does not get
its own column because the controlling current is through a zero volt voltage source,
called Vname and is already in the net list.'''
= 0 # count source number as code walks through the data frame
sn for i in range(len(df)):
= df.loc[i,'p node']
n1 = df.loc[i,'n node']
n2 = df.loc[i,'Vout'] # node connected to Op Amp output
n_vout
# process elements with input to B matrix
= df.loc[i,'element'][0] #get 1st letter of element name
x if x == 'V':
if i_unk > 1: #is B greater than 1 by n?, V
if n1 != 0:
-1,sn] = 1
B[n1if n2 != 0:
-1,sn] = -1
B[n2else:
if n1 != 0:
-1] = 1
B[n1if n2 != 0:
-1] = -1
B[n2+= 1 #increment source count
sn if x == 'O': # Op Amp type, output connection of the Op Amp goes in the B matrix
-1,sn] = 1
B[n_vout+= 1 # increment source count
sn if (x == 'H') or (x == 'F'): # H: ccvs, F: cccs,
if i_unk > 1: #is B greater than 1 by n?, H, F
# check to see if any terminal is grounded
# then stamp the matrix
if n1 != 0:
-1,sn] = 1
B[n1if n2 != 0:
-1,sn] = -1
B[n2else:
if n1 != 0:
-1] = 1
B[n1if n2 != 0:
-1] = -1
B[n2+= 1 #increment source count
sn if x == 'E': # vcvs type, only ik column is altered at n1 and n2
if i_unk > 1: #is B greater than 1 by n?, E
if n1 != 0:
-1,sn] = 1
B[n1if n2 != 0:
-1,sn] = -1
B[n2else:
if n1 != 0:
-1] = 1
B[n1if n2 != 0:
-1] = -1
B[n2+= 1 #increment source count
sn if x == 'L':
if i_unk > 1: #is B greater than 1 by n?, L
if n1 != 0:
-1,sn] = 1
B[n1if n2 != 0:
-1,sn] = -1
B[n2else:
if n1 != 0:
-1] = 1
B[n1if n2 != 0:
-1] = -1
B[n2+= 1 #increment source count
sn
# check source count
if sn != i_unk:
raise Exception('source number, sn={:d} not equal to i_unk={:d} in matrix B'.format(sn,i_unk))
''' The C matrix is an m by n matrix with only 0, 1 and -1 elements (except for controlled sources).
The code is similar to the B matrix code, except the indices are swapped. The code loops through
all the branches and process elements that have stamps for the C matrix:
- Voltage sources (V)
- Opamps (O)
- CCVS (H)
- CCCS (F)
- VCVS (E)
- Inductors (L)
Op Amp elements
The Op Amp element is assumed to be an ideal Op Amp and use of this component is valid only when
used in circuits with a DC path (a short or a resistor) from the output terminal to the negative
input terminal of the Op Amp. No error checking is provided and if the condition is violated,
the results likely will be erroneous. See [3][4].
Find the the column position in the C and D matrix for controlled sources
needs to return the node numbers and branch number of controlling branch'''
def find_vname(name):
# need to walk through data frame and find these parameters
for i in range(len(df2)):
# process all the elements creating unknown currents
if name == df2.loc[i,'element']:
= df2.loc[i,'p node']
n1 = df2.loc[i,'n node']
n2 return n1, n2, i # n1, n2 & col_num are from the branch of the controlling element
raise Exception('failed to find matching branch element in find_vname')
# generate the C Matrix
= 0 # count source number as code walks through the data frame
sn for i in range(len(df)):
= df.loc[i,'p node']
n1 = df.loc[i,'n node']
n2 = df.loc[i,'cp node'] # nodes for controlled sources
cn1 = df.loc[i,'cn node']
cn2 = df.loc[i,'Vout'] # node connected to Op Amp output
n_vout
# process elements with input to B matrix
= df.loc[i,'element'][0] #get 1st letter of element name
x if x == 'V':
if i_unk > 1: #is B greater than 1 by n?, V
if n1 != 0:
-1] = 1
C[sn,n1if n2 != 0:
-1] = -1
C[sn,n2else:
if n1 != 0:
-1] = 1
C[n1if n2 != 0:
-1] = -1
C[n2+= 1 #increment source count
sn
if x == 'O': # Op Amp type, input connections of the opamp go into the C matrix
# C[sn,n_vout-1] = 1
if i_unk > 1: #is B greater than 1 by n?, O
# check to see if any terminal is grounded
# then stamp the matrix
if n1 != 0:
-1] = 1
C[sn,n1if n2 != 0:
-1] = -1
C[sn,n2else:
if n1 != 0:
-1] = 1
C[n1if n2 != 0:
-1] = -1
C[n2+= 1 # increment source count
sn
if x == 'F': # need to count F (cccs) types
+= 1 #increment source count
sn if x == 'H': # H: ccvs
if i_unk > 1: #is B greater than 1 by n?, H
# check to see if any terminal is grounded
# then stamp the matrix
if n1 != 0:
-1] = 1
C[sn,n1if n2 != 0:
-1] = -1
C[sn,n2else:
if n1 != 0:
-1] = 1
C[n1if n2 != 0:
-1] = -1
C[n2+= 1 #increment source count
sn if x == 'E': # vcvs type, ik column is altered at n1 and n2, cn1 & cn2 get value
if i_unk > 1: #is B greater than 1 by n?, E
if n1 != 0:
-1] = 1
C[sn,n1if n2 != 0:
-1] = -1
C[sn,n2# add entry for cp and cn of the controlling voltage
if cn1 != 0:
-1] = -sympify(df.loc[i,'element'].lower())
C[sn,cn1if cn2 != 0:
-1] = sympify(df.loc[i,'element'].lower())
C[sn,cn2else:
if n1 != 0:
-1] = 1
C[n1if n2 != 0:
-1] = -1
C[n2= find_vname(df.loc[i,'Vname'])
vn1, vn2, df2_index if vn1 != 0:
-1] = -sympify(df.loc[i,'element'].lower())
C[vn1if vn2 != 0:
-1] = sympify(df.loc[i,'element'].lower())
C[vn2+= 1 #increment source count
sn
if x == 'L':
if i_unk > 1: #is B greater than 1 by n?, L
if n1 != 0:
-1] = 1
C[sn,n1if n2 != 0:
-1] = -1
C[sn,n2else:
if n1 != 0:
-1] = 1
C[n1if n2 != 0:
-1] = -1
C[n2+= 1 #increment source count
sn
# check source count
if sn != i_unk:
raise Exception('source number, sn={:d} not equal to i_unk={:d} in matrix C'.format(sn,i_unk))
''' The D matrix is an m by m matrix, where m is the number of unknown currents.
m = i_unk = num_v+num_opamps+num_vcvs+num_ccvs+num_ind+num_cccs
Stamps that affect the D matrix are: inductor, ccvs and cccs
inductors: minus sign added to keep current flow convention consistent
Coupled inductors notes:
Can the K statement be anywhere in the net list, even before Lx and Ly?
12/6/2017 doing some debugging on with coupled inductors
LTSpice seems to put the phasing dot on the neg node when it generates the netlist
This code uses M for mutual inductance, LTSpice uses k for the coupling coefficient.'''
# generate the D Matrix
= 0 # count source number as code walks through the data frame
sn for i in range(len(df)):
= df.loc[i,'p node']
n1 = df.loc[i,'n node']
n2 #cn1 = df.loc[i,'cp node'] # nodes for controlled sources
#cn2 = df.loc[i,'cn node']
#n_vout = df.loc[i,'Vout'] # node connected to Op Amp output
# process elements with input to D matrix
= df.loc[i,'element'][0] #get 1st letter of element name
x if (x == 'V') or (x == 'O') or (x == 'E'): # need to count V, E & O types
+= 1 #increment source count
sn
if x == 'L':
if i_unk > 1: #is D greater than 1 by 1?
+= -s*sympify(df.loc[i,'element'])
D[sn,sn] else:
+= -s*sympify(df.loc[i,'element'])
D[sn] += 1 #increment source count
sn
if x == 'H': # H: ccvs
# if there is a H type, D is m by m
# need to find the vn for Vname
# then stamp the matrix
= find_vname(df.loc[i,'Vname'])
vn1, vn2, df2_index += -sympify(df.loc[i,'element'].lower())
D[sn,df2_index] += 1 #increment source count
sn
if x == 'F': # F: cccs
# if there is a F type, D is m by m
# need to find the vn for Vname
# then stamp the matrix
= find_vname(df.loc[i,'Vname'])
vn1, vn2, df2_index += -sympify(df.loc[i,'element'].lower())
D[sn,df2_index] = 1
D[sn,sn] += 1 #increment source count
sn
if x == 'K': # K: coupled inductors, KXX LYY LZZ value
# if there is a K type, D is m by m
= find_vname(df.loc[i,'Lname1']) # get i_unk position for Lx
vn1, vn2, ind1_index = find_vname(df.loc[i,'Lname2']) # get i_unk position for Ly
vn1, vn2, ind2_index # enter sM on diagonals = value*sqrt(LXX*LZZ)
+= -s*sympify('M{:s}'.format(df.loc[i,'element'].lower()[1:])) # s*Mxx
D[ind1_index,ind2_index] += -s*sympify('M{:s}'.format(df.loc[i,'element'].lower()[1:])) # -s*Mxx
D[ind2_index,ind1_index]
''' The V matrix is an n by 1 matrix formed of the node voltages, where n is the number of nodes. Each element in V corresponds to the voltage at the node.
Maybe make small v's v_1 so as not to confuse v1 with V1.'''
# generate the V matrix
for i in range(num_nodes):
= sympify('v{:d}'.format(i+1))
V[i]
''' The J matrix is an m by 1 matrix, where m is the number of unknown currents.
i_unk = num_v+num_opamps+num_vcvs+num_ccvs+num_ind+num_cccs
The J matrix is an m by 1 matrix, with one entry for each i_unk from a source'''
for i in range(len(df2)):
# process all the unknown currents
= sympify('I_{:s}'.format(df2.loc[i,'element']))
J[i]
''' The I matrix is an n by 1 matrix, where n is the number of nodes. The value
of each element of I is determined by the sum of current sources into the
corresponding node. If there are no current sources connected to the node, the value is zero.'''
# generate the I matrix, current sources have n2 = arrow end of the element
for i in range(len(df)):
= df.loc[i,'p node']
n1 = df.loc[i,'n node']
n2 # process all the passive elements, save conductance to temp value
= df.loc[i,'element'][0] #get 1st letter of element name
x if x == 'I':
= sympify(df.loc[i,'element'])
g # sum the current into each node
if n1 != 0:
-1] -= g
I[n1if n2 != 0:
-1] += g
I[n2
# The Ev matrix is m by 1 and holds the values of the independent voltage sources.
= 0 # count source number
sn for i in range(len(df)):
# process all the passive elements
= df.loc[i,'element'][0] #get 1st letter of element name
x if x == 'V':
= sympify(df.loc[i,'element'])
Ev[sn] += 1
sn
''' The Z matrix holds the independent voltage and current sources and is the combination of 2
smaller matrices I and Ev. The Z matrix is (m+n) by 1, n is the number of nodes, and m is the
number of independent voltage sources. The I matrix is n by 1 and contains the sum of the currents
through the passive elements into the corresponding node (either zero, or the sum of independent
current sources). The Ev matrix is m by 1 and holds the values of the independent voltage sources.'''
= I[:] + Ev[:] # the + operator in Python concatenates the lists
Z
''' The X matrix is an (n+m) by 1 vector that holds the unknown quantities (node voltages and the currents through
the independent voltage sources). The top n elements are the n node voltages. The bottom m elements represent the
currents through the m independent voltage sources in the circuit. The V matrix is n by 1 and holds the unknown voltages.
The J matrix is m by 1 and holds the unknown currents through the voltage sources '''
= V[:] + J[:] # the + operator in Python concatenates the lists
X
# The A matrix is (m+n) by (m+n) and will be developed as the combination of 4 smaller matrices, G, B, C, and D.
= num_nodes
n = i_unk
m = zeros(m+n,m+n)
A for i in range(n):
for j in range(n):
= G[i,j]
A[i,j]
if i_unk > 1:
for i in range(n):
for j in range(m):
+j] = B[i,j]
A[i,n+j,i] = C[j,i]
A[n
for i in range(m):
for j in range(m):
+i,n+j] = D[i,j]
A[n
if i_unk == 1:
for i in range(n):
= B[i]
A[i,n] = C[i]
A[n,i] = D[0] # added 1/7/2024 while debugging source free circuit with one inductor
A[n,n]
return report, df, df2, A, X, Z