19  Test 15

The circuit in Figure 19.1 has no unknown current sources. The Python code generates the following empty matrices: B, C, D, J, Ev.

Figure 19.1: Test #15 circuit
I1 1 0 1
R1 1 0 10
R2 2 1 10
R3 3 2 1000
C1 2 0 0.01
C2 3 0 0.002
#import os
from sympy import *
import numpy as np
from tabulate import tabulate
from scipy import signal
import matplotlib.pyplot as plt
import pandas as pd
import SymMNA
from IPython.display import display, Markdown, Math, Latex
init_printing()

19.1 Load the net list

net_list = '''
I1 1 0 1
R1 1 0 10
R2 2 1 10
R3 3 2 1000
C1 2 0 0.01
C2 3 0 0.002
'''

19.2 Call the symbolic modified nodal analysis function

report, network_df, i_unk_df, A, X, Z = SymMNA.smna(net_list)

Display the equations

# reform X and Z into Matrix type for printing
Xp = Matrix(X)
Zp = Matrix(Z)
temp = ''
for i in range(len(X)):
    temp += '${:s}$<br>'.format(latex(Eq((A*Xp)[i:i+1][0],Zp[i])))

Markdown(temp)

\(v_{1} \cdot \left(\frac{1}{R_{2}} + \frac{1}{R_{1}}\right) - \frac{v_{2}}{R_{2}} = - I_{1}\)
\(v_{2} \left(C_{1} s + \frac{1}{R_{3}} + \frac{1}{R_{2}}\right) - \frac{v_{3}}{R_{3}} - \frac{v_{1}}{R_{2}} = 0\)
\(v_{3} \left(C_{2} s + \frac{1}{R_{3}}\right) - \frac{v_{2}}{R_{3}} = 0\)

19.2.1 Netlist statistics

print(report)
Net list report
number of lines in netlist: 6
number of branches: 6
number of nodes: 3
number of unknown currents: 0
number of RLC (passive components): 5
number of inductors: 0
number of independent voltage sources: 0
number of independent current sources: 1
number of Op Amps: 0
number of E - VCVS: 0
number of G - VCCS: 0
number of F - CCCS: 0
number of H - CCVS: 0
number of K - Coupled inductors: 0

19.2.2 Connectivity Matrix

A

\(\displaystyle \left[\begin{matrix}\frac{1}{R_{2}} + \frac{1}{R_{1}} & - \frac{1}{R_{2}} & 0\\- \frac{1}{R_{2}} & C_{1} s + \frac{1}{R_{3}} + \frac{1}{R_{2}} & - \frac{1}{R_{3}}\\0 & - \frac{1}{R_{3}} & C_{2} s + \frac{1}{R_{3}}\end{matrix}\right]\)

19.2.3 Unknown voltages and currents

X

\(\displaystyle \left[ v_{1}, \ v_{2}, \ v_{3}\right]\)

19.2.4 Known voltages and currents

Z

\(\displaystyle \left[ - I_{1}, \ 0, \ 0\right]\)

19.2.5 Network dataframe

network_df
element p node n node cp node cn node Vout value Vname Lname1 Lname2
0 I1 1 0 NaN NaN NaN 1.0 NaN NaN NaN
1 R1 1 0 NaN NaN NaN 10.0 NaN NaN NaN
2 R2 2 1 NaN NaN NaN 10.0 NaN NaN NaN
3 R3 3 2 NaN NaN NaN 1000.0 NaN NaN NaN
4 C1 2 0 NaN NaN NaN 0.01 NaN NaN NaN
5 C2 3 0 NaN NaN NaN 0.002 NaN NaN NaN

19.2.6 Unknown current dataframe

i_unk_df
element p node n node

19.2.7 Build the network equations

# Put matrices into SymPy 
X = Matrix(X)
Z = Matrix(Z)

NE_sym = Eq(A*X,Z)

Turn the free symbols into SymPy variables.

var(str(NE_sym.free_symbols).replace('{','').replace('}',''))

\(\displaystyle \left( v_{2}, \ R_{1}, \ R_{2}, \ s, \ I_{1}, \ v_{1}, \ R_{3}, \ C_{2}, \ C_{1}, \ v_{3}\right)\)

19.3 Symbolic solution

U_sym = solve(NE_sym,X)

Display the symbolic solution

temp = ''
for i in U_sym.keys():
    temp += '${:s} = {:s}$<br>'.format(latex(i),latex(U_sym[i]))

Markdown(temp)

\(v_{1} = \frac{- C_{1} C_{2} I_{1} R_{1} R_{2} R_{3} s^{2} - C_{1} I_{1} R_{1} R_{2} s - C_{2} I_{1} R_{1} R_{2} s - C_{2} I_{1} R_{1} R_{3} s - I_{1} R_{1}}{C_{1} C_{2} R_{1} R_{3} s^{2} + C_{1} C_{2} R_{2} R_{3} s^{2} + C_{1} R_{1} s + C_{1} R_{2} s + C_{2} R_{1} s + C_{2} R_{2} s + C_{2} R_{3} s + 1}\)
\(v_{2} = \frac{- C_{2} I_{1} R_{1} R_{3} s - I_{1} R_{1}}{C_{1} C_{2} R_{1} R_{3} s^{2} + C_{1} C_{2} R_{2} R_{3} s^{2} + C_{1} R_{1} s + C_{1} R_{2} s + C_{2} R_{1} s + C_{2} R_{2} s + C_{2} R_{3} s + 1}\)
\(v_{3} = - \frac{I_{1} R_{1}}{C_{1} C_{2} R_{1} R_{3} s^{2} + C_{1} C_{2} R_{2} R_{3} s^{2} + C_{1} R_{1} s + C_{1} R_{2} s + C_{2} R_{1} s + C_{2} R_{2} s + C_{2} R_{3} s + 1}\)

19.4 Construct a dictionary of element values

element_values = SymMNA.get_part_values(network_df)

# display the component values
for k,v in element_values.items():
    print('{:s} = {:s}'.format(str(k), str(v)))
I1 = 1.0
R1 = 10.0
R2 = 10.0
R3 = 1000.0
C1 = 0.01
C2 = 0.002

19.5 DC operating point

NE = NE_sym.subs(element_values)
NE_dc = NE.subs({s:0})

Display the equations with numeric values.

temp = ''
for i in range(shape(NE_dc.lhs)[0]):
    temp += '${:s} = {:s}$<br>'.format(latex(NE_dc.rhs[i]),latex(NE_dc.lhs[i]))

Markdown(temp)

\(-1.0 = 0.2 v_{1} - 0.1 v_{2}\)
\(0 = - 0.1 v_{1} + 0.101 v_{2} - 0.001 v_{3}\)
\(0 = - 0.001 v_{2} + 0.001 v_{3}\)

Solve for voltages and currents.

U_dc = solve(NE_dc,X)

Display the numerical solution

Six significant digits are displayed so that results can be compared to LTSpice.

table_header = ['unknown', 'mag']
table_row = []

for name, value in U_dc.items():
    table_row.append([str(name),float(value)])

print(tabulate(table_row, headers=table_header,colalign = ('left','decimal'),tablefmt="simple",floatfmt=('5s','.6f')))
unknown           mag
---------  ----------
v1         -10.000000
v2         -10.000000
v3         -10.000000

The node voltages and current through the sources are solved for. The Sympy generated solution matches the LTSpice results:

       --- Operating Point ---

V(1):    -10     voltage
V(2):    -10     voltage
V(3):    -10     voltage
I(C1):   -1e-13  device_current
I(C2):   -2e-14  device_current
I(I1):   1   device_current
I(R1):   -1  device_current
I(R2):   1.20082e-13     device_current
I(R3):   2e-14   device_current

The results from LTSpice are slightly different in some cases starting at the 2nd decimal place.

19.5.1 AC analysis

Solve equations for \(\omega\) equal to 1 radian per second, s = 1j. V1 is the AC source, magnitude of 10

NE = NE_sym.subs(element_values)
NE_w1 = NE.subs({s:1j})

Display the equations with numeric values.

temp = ''
for i in range(shape(NE_w1.lhs)[0]):
    temp += '${:s} = {:s}$<br>'.format(latex(NE_w1.rhs[i]),latex(NE_w1.lhs[i]))

Markdown(temp)

\(-1.0 = 0.2 v_{1} - 0.1 v_{2}\)
\(0 = - 0.1 v_{1} + v_{2} \cdot \left(0.101 + 0.01 i\right) - 0.001 v_{3}\)
\(0 = - 0.001 v_{2} + v_{3} \cdot \left(0.001 + 0.002 i\right)\)

Solve for voltages and currents.

U_w1 = solve(NE_w1,X)

Display the numerical solution

Six significant digits are displayed so that results can be compared to LTSpice.

table_header = ['unknown', 'mag','phase, deg']
table_row = []

for name, value in U_w1.items():
    table_row.append([str(name),float(abs(value)),float(arg(value)*180/np.pi)])

print(tabulate(table_row, headers=table_header,colalign = ('left','decimal','decimal'),tablefmt="simple",floatfmt=('5s','.6f','.6f')))
unknown         mag    phase, deg
---------  --------  ------------
v1         9.771261    174.320654
v2         9.642525    168.430028
v3         4.312268    104.995079
       --- AC Analysis ---

frequency:  0.159155    Hz
V(1):   mag:    9.77126 phase:    174.321°  voltage
V(2):   mag:    9.64252 phase:     168.43°  voltage
V(3):   mag:    4.31227 phase:    104.995°  voltage
I(C1):  mag:  0.0964252 phase:    -101.57°  device_current
I(C2):  mag: 0.00862454 phase:   -165.005°  device_current
I(I1):  mag:          1 phase:          0°  device_current
I(R1):  mag:   0.977126 phase:    174.321°  device_current
I(R2):  mag:   0.100579 phase:    74.0313°  device_current
I(R3):  mag: 0.00862454 phase:    14.9951°  device_current

19.5.2 AC Sweep

Looking at node 21 voltage and comparing the results with those obtained from LTSpice. The frequency sweep is from 0.01 Hz to 1 Hz.

NE = NE_sym.subs(element_values)

Display the equations with numeric values.

temp = ''
for i in range(shape(NE.lhs)[0]):
    temp += '${:s} = {:s}$<br>'.format(latex(NE.rhs[i]),latex(NE.lhs[i]))

Markdown(temp)

\(-1.0 = 0.2 v_{1} - 0.1 v_{2}\)
\(0 = - 0.1 v_{1} + v_{2} \cdot \left(0.01 s + 0.101\right) - 0.001 v_{3}\)
\(0 = - 0.001 v_{2} + v_{3} \cdot \left(0.002 s + 0.001\right)\)

Solve for voltages and currents.

U_ac = solve(NE,X)

19.5.3 Plot the voltage at node 3

H = U_ac[v3]
H

\(\displaystyle - \frac{250.0}{10.0 s^{2} + 56.0 s + 25.0}\)

num, denom = fraction(H) #returns numerator and denominator

# convert symbolic to numpy polynomial
a = np.array(Poly(num, s).all_coeffs(), dtype=float)
b = np.array(Poly(denom, s).all_coeffs(), dtype=float)
system = (a, b)
x = np.logspace(-2, 2, 400, endpoint=False)*2*np.pi
w, mag, phase = signal.bode(system, w=x) # returns: rad/s, mag in dB, phase in deg

Load the csv file of node 10 voltage over the sweep range and plot along with the results obtained from SymPy.

fn = 'test_15.csv' # data from LTSpice
LTSpice_data = np.genfromtxt(fn, delimiter=',',skip_header=1)
# initaliaze some empty arrays
frequency = np.zeros(len(LTSpice_data))
V_1 = np.zeros(len(LTSpice_data)).astype(complex)
V_2 = np.zeros(len(LTSpice_data)).astype(complex)
V_3 = np.zeros(len(LTSpice_data)).astype(complex)
# convert the csv data to complex numbers and store in the array
for i in range(len(LTSpice_data)):
    frequency[i] = LTSpice_data[i][0]
    V_1[i] = LTSpice_data[i][1] + LTSpice_data[i][2]*1j
    V_2[i] = LTSpice_data[i][3] + LTSpice_data[i][4]*1j
    V_3[i] = LTSpice_data[i][5] + LTSpice_data[i][6]*1j

Plot the results.
Using

np.unwrap(2 * phase) / 2)

to keep the phase plots the same.

fig, ax1 = plt.subplots()
ax1.set_ylabel('magnitude, dB')
ax1.set_xlabel('frequency, Hz')

plt.semilogx(frequency, 20*np.log10(np.abs(V_3)),'-r')    # Bode magnitude plot
plt.semilogx(w/(2*np.pi), mag,'-b')    # Bode magnitude plot

ax1.tick_params(axis='y')
#ax1.set_ylim((-30,20))
plt.grid()

# instantiate a second y-axes that shares the same x-axis
ax2 = ax1.twinx()
color = 'tab:blue'

plt.semilogx(frequency, np.unwrap(2*np.angle(V_3)/2) *180/np.pi,':',color=color)  # Bode phase plot
plt.semilogx(w/(2*np.pi), phase,':',color='tab:red')  # Bode phase plot

ax2.set_ylabel('phase, deg',color=color)
ax2.tick_params(axis='y', labelcolor=color)
#ax2.set_ylim((-5,25))

plt.title('Magnitude and phase response')
plt.show()

fig, ax1 = plt.subplots()
ax1.set_ylabel('magnitude difference')
ax1.set_xlabel('frequency, Hz')

plt.semilogx(frequency[0:-1], np.abs(V_3[0:-1])-10**(mag/20),'-k')    # Bode magnitude plot
#plt.semilogx(w/(2*np.pi), mag_v3,'-b')    # Bode magnitude plot

ax1.tick_params(axis='y')
#ax1.set_ylim((-30,20))
plt.grid()

# instantiate a second y-axes that shares the same x-axis
ax2 = ax1.twinx()
color = 'tab:blue'

plt.semilogx(frequency[0:-1], np.angle(V_3[0:-1])*180/np.pi-phase,':',color=color,label='phase')  # Bode phase plot
#plt.semilogx(w/(2*np.pi), phase_v3,':',color='tab:red')  # Bode phase plot

ax2.set_ylabel('phase difference, deg',color=color)
ax2.tick_params(axis='y', labelcolor=color)
#ax2.set_ylim((-5,25))

ax2.plot(np.NaN, np.NaN, color='k', label='magnitude')

plt.legend()
plt.title('Difference between LTSpice and Python results')
plt.show()

The SymPy and LTSpice results overlay each other. The scale for the magnitude is \(10^{-14}\) and \(10^{-13}\) for the phase indicating the numerical difference is very small.